Civil Engineering

Research Publications

  • Aradhana, A., Singh, B., & Sihag, P. (2021). Predictive models for estimation of labyrinth weir aeration efficiency. Journal of Achievements in Materials and Manufacturing Engineering105(1).
  • Arora, S., Singh, B., & Bhardwaj, B. (2019). Strength performance of recycled aggregate concretes containing mineral admixtures and their performance prediction through various modeling techniques. Journal of Building Engineering24, 100741.
  • Bhoria, S., Sihag, P., Singh, B., Ebtehaj, I., & Bonakdari, H. (2021). Evaluating Parshall flume aeration with experimental observations and advance soft computing techniques. Neural Computing and Applications33(24), 17257-17271.
  • Devender, A. V., & Sharma, S. Traffic Accident Investigation Process: A Case Study in Panipat District of Haryana State, India.
  • Minocha, V. K., & Singh, B. (2023). Discussion of “Prediction of Maximum Scour Depth near Spur Dikes in Uniform Bed Sediment Using Stacked Generalization Ensemble Tree-Based Frameworks” by Manish Pandey, Mehdi Jamei, Masoud Karbasi, Iman Ahmadianfar, and Xuefeng Chu. Journal of Irrigation and Drainage Engineering, 149(1), 07022018.
  • Nivesh, S., Negi, D., Kashyap, P. S., Aggarwal, S., Singh, B., Saran, B., … & Sihag, P. (2022). Prediction of river discharge of Kesinga sub-catchment of Mahanadi basin using machine learning approaches. Arabian Journal of Geosciences15(16), 1-19.
  • Nivesh, S., Negi, D., Kashyap, P. S., Aggarwal, S., Singh, B., Saran, B., … & Sihag, P. (2022). Prediction of river discharge of Kesinga sub-catchment of Mahanadi basin using machine learning approaches. Arabian Journal of Geosciences, 15(16), 1369.
  • Pandhiani, S. M., Sihag, P., Shabri, A. B., Singh, B., & Pham, Q. B. (2020). Time-series prediction of streamflows of Malaysian rivers using data-driven techniques. Journal of Irrigation and Drainage Engineering146(7), 04020013.
  • Pandhiani, S. M., Sihag, P., Shabri, A. B., Singh, B., & Pham, Q. B. (2021). Closure to “Time-Series Prediction of Streamflows of Malaysian Rivers Using Data-Driven Techniques” by Siraj Muhammed Pandhiani, Parveen Sihag, Ani Bin Shabri, Balraj Singh, and Quoc Bao Pham. Journal of Irrigation and Drainage Engineering147(9), 07021015.
  • Sepahvand, A., Singh, B., Ghobadi, M., & Sihag, P. (2021). Estimation of infiltration rate using data-driven models. Arabian Journal of Geosciences14(1), 1-11.
  • Sepahvand, A., Singh, B., Sihag, P., Nazari Samani, A., Ahmadi, H., & Fiz Nia, S. (2021). Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH Journal of Hydraulic Engineering27(sup1), 124-135.
  • Sihag, P., Esmaeilbeiki, F., Singh, B., & Pandhiani, S. M. (2020). Model-based soil temperature estimation using climatic parameters: the case of Azerbaijan Province, Iran. Geology, Ecology, and Landscapes4(3), 203-215.
  • Sihag, P., Esmaeilbeiki, F., Singh, B., Ebtehaj, I., & Bonakdari, H. (2019). Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques. Soft Computing23(23), 12897-12910.
  • Sihag, P., Kumar, M., & Singh, B. (2021). Assessment of infiltration models developed using soft computing techniques. Geology, Ecology, and Landscapes5(4), 241-251.
  • Sihag, P., Singh, B., Gautam, S., & Debnath, S. (2018). Evaluation of the impact of fly ash on infiltration characteristics using different soft computing techniques. Applied Water Science8(6), 1-10.
  • Sihag, P., Singh, B., Said, M. A. B. M., & Azamathulla, H. M. (2022). Prediction of Manning’s coefficient of roughness for high-gradient streams using M5P. Water Supply22(3), 2707-2720.
  • Sihag, P., Singh, B., Sepah Vand, A., & Mehdipour, V. (2020). Modeling the infiltration process with soft computing techniques. ISH Journal of Hydraulic Engineering26(2), 138-152.
  • Singh, A., Singh, B., & Sihag, P. (2021). Experimental investigation and modeling of aeration efficiency at Labyrinth Weirs. Journal of Soft Computing in Civil Engineering5(3), 15-31.
  • Singh, B. (2020). Prediction of the sodium absorption ratio using data-driven models: a case study in Iran. Geology, Ecology, and Landscapes4(1), 1-10.
  • Singh, B., & Sihag, P. (2022). Discussion of “Determination of Discharge Distribution in Meandering Compound Channels Using Machine Learning Techniques” by Abinash Mohanta, Arpan Pradhan, and KC Patra. Journal of Irrigation and Drainage Engineering, 148(12), 07022012.
  • Singh, B., & Singh, T. Soft Computing-Based Prediction of Compressive Strength of High Strength Concrete. In Applications of Computational Intelligence in Concrete Technology (pp. 207-218). CRC Press.
  • Singh, B., Ebtehaj, I., Sihag, P., & Bonakdari, H. (2022). An expert system for predicting the infiltration characteristics. Water Supply22(3), 2847-2862.
  • Singh, B., Sihag, P., & Deswal, S. (2019). Modelling of the impact of water quality on the infiltration rate of the soil. Applied Water Science9(1), 1-9.
  • Singh, B., Sihag, P., & Singh, K. (2017). Modelling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Systems and Environment3(3), 999-1004.
  • Singh, B., Sihag, P., & Singh, K. (2018). Comparison of infiltration models in NIT Kurukshetra campus. Applied Water Science8(2), 1-8.
  • Singh, B., Sihag, P., Pandhiani, S. M., Debnath, S., & Gautam, S. (2021). Estimation of permeability of soil using easy measured soil parameters: assessing the artificial intelligence-based models. ISH Journal of Hydraulic Engineering27(sup1), 38-48.
  • Singh, B., Sihag, P., Parsaie, A., & Angelaki, A. (2021). Comparative analysis of artificial intelligence techniques for the prediction of infiltration process. Geology, Ecology, and Landscapes5(2), 109-118.
  • Singh, B., Sihag, P., Singh, K., & Kumar, S. (2021). Estimation of trapping efficiency of a vortex tube silt ejector. International Journal of River Basin Management19(3), 261-269.
  • Singh, B., Sihag, P., Singh, V. P., Sepahvand, A., & Singh, K. (2021). Soft computing technique-based prediction of water quality index. Water Supply21(8), 4015-4029.
  • Singh, B., Sihag, P., Tomar, A., & SEHGAL, A. (2019). Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches. Journal of Materials and Engineering Structures «JMES»6(4), 583-592.
  • Singh, K., Singh, B., Sihag, P., Kumar, V., & Sharma, K. V. (2023). Development and application of modeling techniques to estimate the unsaturated hydraulic conductivity. Modeling Earth Systems and Environment, 1-15.
  • Singh, T., Singh, B., Bansal, S., & Saggu, K. Prediction of Ultrasonic Pulse Velocity of Concrete. In Applications of Computational Intelligence in Concrete Technology (pp. 235-251). CRC Press.
  • Vand, A. S., Sihag, P., Singh, B., & Zand, M. (2018). Comparative evaluation of infiltration models. KSCE Journal of Civil Engineering22(10), 4173-4184.
  • Vashisth, A., & Devender, S. S. Road Safety Status in Top 20 Economies of the World.
  • Vashisth, A., & Kumar, R. (2018). Review on Effect of Pavement Characteristics on Fuel Consumption. International Journal of Engineering and Advanced Technology (IJEAT), 1-5.
  • Vashisth, A., Kumar, R., & Sharma, S. (2018). Major principles of sustainable transport system: a literature review. International Journal for Research in Applied Science & Engineering Technology6(2), 218.
  • Thahiya, V., Afzal, S., Kumar, D. (2015). Rutting behavior- Permanent deformation of flexible pavement. International Journal of Scientific Research & Development (IJSRD), 3-4.
© PIET 2022 Developed and Maintained by City Innovates Pvt. Ltd.
Skip to content
Downloads
PMSSS (J&K)
Panipat Institute of Engineering & Technology (PIET)