### M. Tech. (Computer Science and Engineering)

The details of experiential learning are described in this document. Kindly refer to the respective pages as shown in the tables below for the courses offered in various academic sessions.

### Year 2018-2019

| Course Title | Year of offering Name of Students |                               | Page no |
|--------------|-----------------------------------|-------------------------------|---------|
| Dissertation | 2019                              | All The 4th semester Students | 6       |

### Year 2017-2018

| Course Title Year of offering Name of Students |      | Name of Students                 | Page no |
|------------------------------------------------|------|----------------------------------|---------|
| Data Warehousing and Data Mining               | 2017 | Shreya Aggarwal                  | 9       |
| Wireless Networks & Mobile Comp.               | 2017 | 17 Shreya Aggarwal               |         |
| Dissertation                                   | 2018 | 18 All the 4th Semester Students |         |

### Year 2016-2017

| Course Title                     | Year of offering | Name of Students               | Page no |
|----------------------------------|------------------|--------------------------------|---------|
| Data Warehousing and Data Mining | 2016             | Navneet Kaur                   | 9       |
| Digital Image Processing         | 2017             | Navneet Kaur                   | 11      |
| Dissertation                     | 2017             | All the 4the semester Students | 6       |

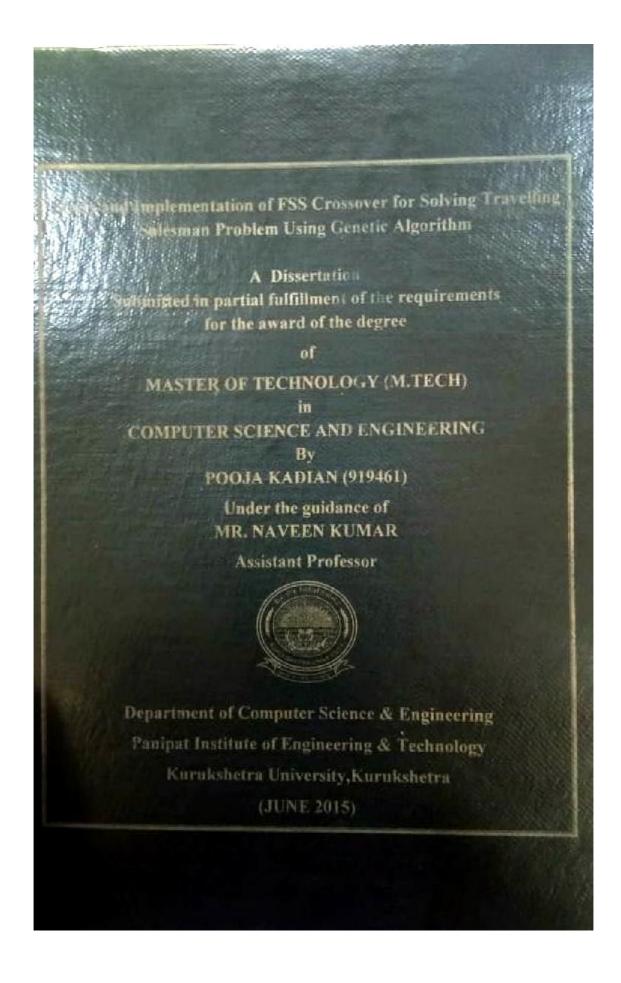
### Year 2015-2016

| Course Title             | Title Year of offering Name of Students |                                 | Page no |
|--------------------------|-----------------------------------------|---------------------------------|---------|
| Digital Image Processing | 2016                                    | SumatiVij                       | 11      |
| Genetic Algorithms       | 2015                                    | Pooja Kadian                    |         |
| Dissertation             | 2016                                    | 6 All the 4th semester Students |         |

### Year 2014-2015

| Course Title                     | ourse Title Year of offering Name of Students |                               | Page no |
|----------------------------------|-----------------------------------------------|-------------------------------|---------|
| Data Warehousing and Data Mining | 2014                                          | Reshu Goel                    | 9       |
| Genetic Algorithms               | 2014 Juhi Gupta 2                             |                               | 2       |
| Wireless Networks & Mobile Comp. | 2014                                          | Swati Rani                    | 4       |
| Dissertation                     | 2015                                          | All the 4th semester Students | 6       |

### **GENETIC ALGORITHMS (MT-CSE-14-33(iii)):**


Genetic algorithms are heuristic search methods used in artificial intelligence and computing. They are used to find optimized solutions to search problems based on the theory of natural selection and evolutionary biology. The technique of Genetic Algorithms is an evolutionary computing approach which is recurrently used in different areas of Computer Science. These algorithms are stochastic techniques that stipulate good-quality solution with low time complexity. These algorithms are effectively used to solve the different research problems viz. query optimization, task scheduling, data mining, part of speech tagger, phrase chunker, image segmentation, inventory management etc. They are commonly used to generate high-quality solutions for optimization problems and search problems. These algorithms are excellent for searching through large and complex data sets.

The students of PIET use these algorithms to complete their research work. Some of the work can be listed as Cost Based Multi- QoS Scheduling Algorithm using Genetic Approach, Genetic Programming and K-Nearest Neighbor Classifier based Intrusion Detection etc.

### **ExperientialActivity: Project Development**

| S.no | Dissertation Title                                                                                          | Year      | Student Name |
|------|-------------------------------------------------------------------------------------------------------------|-----------|--------------|
|      | Design & Implementation of FSS Crossover for Solving<br>Travelling Salesman Problem using Genetic Algorithm | 2015-2016 | Pooja Kadian |
| 2    | BPSO Optimized K-means clustering approach for Data Analysis                                                | 2014-2015 | Juhi Gupta   |

Sample Dissertation Title "Design & Implementation of FSS Crossover for Solving Travelling Salesman Problem using Genetic Algorithm" is attached below



### WIRELES NETWORKS AND MOBILE COMPUTING (MT-CSE-14-34(ii):

Mobile phones have emerged as truly pervasive and affordable Information and Communication Technology (ICT) platform. Large penetration of cellular networks and availability of advanced hardware platforms have inspired multiple opportunities in the domain of mobile computing. In this course, both the theoretical and practical aspects required to design and build applications for mobile-based services are covered. It focuses on developing hands-on skills pertaining to the latest and most popular platforms, e.g. Symbian, Android, Maemo, Windows Mobile, etc. Various wireless technologies, such as Bluetooth, WiFi, GPRS, EDGE, 3G, LTE, 4G, etc are discussed with the students.

Students are trained not only to use existing mobile platforms but also to build new ones. Some of the research projects designed by students can be listed as An Efficient Best Fit Channel Switching (BFCS) Scheme for Cognitive Radio Networks, Routing Protocol (OBCRP) for Cognitive Radio Ad Hoc Networks on Optimal Back up Channel.

### **Experiential Activity: Project Development**

| S.no | Dissertation Title                                                                             | Year      | Student Name    |
|------|------------------------------------------------------------------------------------------------|-----------|-----------------|
| 1    | Enhanced Ad-Hoc on Demanding Multipath Distance vector Routing Protocol for Internet of Things | 2017-2018 | Shreya Aggarwal |
| 2    | BPSO Optimized K-means clustering approach for Data Analysis                                   | 2014-2015 | Swati Gupta     |

Sample Dissertation Title "Enhanced Ad-Hoc on Demanding Multipath Distance vector Routing Protocol for Internet of Things" is attached below.

## ENHANCED AD-HOC ON-DEMANDING MULTIPATH DISTANCE VECTOR ROUTING PROTOCOL FOR INTERNET OF THINGS

A Dissertation
Submitted in partial fulfilment of the requirements
For the award of the degree
Of

MASTER OF TECHNOLOGY

COMPUTER SCIENCE AND ENGINEERING

Submitted By Shreya Aggarwal (1270652)

Under the guidance of

Deepak Kumar

Assistant Professor(CSE)



Department of Computer Science & Engineering
Panipat Institute of Engineering & Technology, Samalkha

### **DISSERTATION (MT-CSE-14-41):**

A dissertation is a written document that summarizes the research work of student; this work represents the scholar's research and findings. Computer science dissertation can be implemented by a number of tools such as Java, Matlab, Image Processing, Soft Computing, High Performance Network, Machine Learning, Cloud Computing, Software Engineering, Network Security etc. The dissertation is supervised by faculty member and assessed by external examiner. The evaluation criteria usually includes the complete implementation of the proposed research work and the dissertation report submitted including research gap, research objective, literature survey, tools used, design, development, analysis, results and future implementation.

Some of the dissertation submitted by students can be listed as Multi Level Security Mechanism for Hiding Digital Data using Hybrid approach of Audio Steganography and Cryptography, A Priority Based Workflow Management in Grid Computing System, Machine Learning as Intelligent tool for Churn Prediction in Telecommunication Industry, ANT-LOAD: A Proficient Meta heuristic Load Balancing in Cloud System, etc.

| SCH                                                                                  | EME OF EXAMINATION FOR M.TECH. (CON<br>Academic Sessio |              | E & EI  | NGINE  | ERING          | 6) w.e | .f.  |     |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|---------|--------|----------------|--------|------|-----|
| Paper Code                                                                           | Nomenclature of Paper Exam Time Marks (hrs.)           |              |         |        | Total<br>Marks |        |      |     |
|                                                                                      |                                                        |              |         | Max    | Pass           | Max    | Pass |     |
| FIRST SEMESTE                                                                        | R                                                      |              |         |        | •              |        |      |     |
| MT-CSE-14-11                                                                         | ADVANCES IN ALGORITHMS                                 |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-12                                                                         | ADVANCED WEB TECHNOLOGIES                              |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-13                                                                         | DATA WAREHOUSING & DATA MINING                         |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-14                                                                         | ADVANCED COMPUTER ARCHITECTURE                         |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-15                                                                         | S/W LAB – I BASED ON MT-CSE-14-11                      |              | 3       | 100    | 40             |        |      | 100 |
| MT-CSE-14-16                                                                         | S/W LAB – II BASED ON MT-CSE-14-12                     |              | 3       | 100    | 40             |        |      | 100 |
| MT-CSE-14-17                                                                         | SEMINAR                                                |              |         |        |                | 50     | 20   | 50  |
|                                                                                      | TOTAL                                                  |              |         | 600    |                | 250    |      | 850 |
|                                                                                      | SECOND SEM                                             | IESTER       |         |        | _              |        |      |     |
| MT-CSE-14-21                                                                         | OBJECT ORIENTED ANALYSIS & DESIGN U                    | ISING UML    | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-22                                                                         | DIGITAL IMAGE PROCESSING                               |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-23                                                                         | ELECTIVE - I                                           |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-24                                                                         | ELECTIVE - II                                          |              | 3       | 100    | 40             | 50     | 20   | 150 |
| MT-CSE-14-25                                                                         | S/W LAB – III BASED ON MT-CSE-14-21                    |              | 3       | 100    | 40             |        |      | 100 |
| MT-CSE-14-26                                                                         | S/W LAB – IV BASED ON MT-CSE-14-22                     |              | 3       | 100    | 40             |        |      | 100 |
| MT-CSE-14-27                                                                         | SEMINAR                                                |              |         |        |                | 50     | 20   | 50  |
|                                                                                      | TOTAL                                                  |              |         | 600    |                | 250    |      | 850 |
| ELECTIVE PAPE                                                                        | RS                                                     |              |         |        |                |        |      |     |
| ,                                                                                    | i) SOFTWARE QUALITY MODELS & TESTING                   | MT-CSE-14-24 | (i) DIS | STRIBL | JTED S         | SYSTE  | VIS  |     |
| MT-CSE-14-23(ii) HIGH PERFORMANCE NETWORKS MT-CSE-14-24(ii) BIOMETRICS SYSTEM SECURI |                                                        |              |         | URITY  |                |        |      |     |
| MT-CSE-14-23(iii) ADVANCES IN DATABASES MT-CSE-14-24(iii) SECURITY IN COMPUTING      |                                                        |              |         | 3      |                |        |      |     |

|                  |                                                   | THIRD SEMESTER                      |       |        |       |        |      |      |
|------------------|---------------------------------------------------|-------------------------------------|-------|--------|-------|--------|------|------|
| MT-CSE-14-31     | RESEARCH METHODOLOGY & TOOLS 3                    |                                     |       | 100    | 40    | 50     | 20   | 150  |
| MT-CSE-14-32     | ADVANCED OPERATING SY                             | STEMS                               | 3     | 100    | 40    | 50     | 20   | 150  |
| MT-CSE-14-33     | ELECTIVE – I                                      |                                     | 3     | 100    | 40    | 50     | 20   | 150  |
| MT-CSE-14-34     | ELECTIVE - II                                     |                                     | 3     | 100    | 40    | 50     | 20   | 150  |
| MT-CSE-14-35     | S/W LAB – V BASED ON MT                           | -CSE-14-31                          | 3     | 100    | 40    |        |      | 100  |
| MT-CSE-14-36     | IT-CSE-14-36 S/W LAB – VI BASED ON MT-CSE-14-32 3 |                                     |       | 100    | 40    |        |      | 100  |
| MT-CSE-14-37     | SEMINAR                                           |                                     |       |        |       | 50     | 20   | 50   |
|                  | TOTAL                                             |                                     |       | 600    |       | 250    |      | 850  |
|                  |                                                   | ELECTIVE PAPERS                     |       |        |       |        |      |      |
| MT-CSE-14-33(i)  | DATA ANALYTICS                                    | MT-CSE-14-34(i) CLOUD CO            | MPUTI | NG     |       |        |      |      |
| MT-CSE-14-33(ii) | SOFT COMPUTING                                    | MT-CSE-14-34(ii) WIRELESS COMPUTING | NETW  | ORKS A | AND M | 10BIL  | E    |      |
| MT-CSE-14-33(iii | ) GENETIC ALGORITHMS                              | MT-CSE-14-34(iii) SEMANTI           | C WEB | AND S  | OCIAL | . NET\ | NORK | NG   |
|                  |                                                   | FOURTH SEMESTER                     |       |        |       |        |      |      |
| MT-CSE-14-41     | DISSERTATION                                      | EVALUATION                          |       | 200    | 80    | 100    | 40   | 300  |
| WIT-C3E-14-41    | VIVA-VOCE                                         |                                     |       | 150    | 60    |        |      | 150  |
|                  | TOTAL                                             |                                     |       | 350    |       | 100    |      | 450  |
|                  | GRAND TOTAL                                       |                                     |       | 2150   |       | 850    |      | 3000 |

**Experiential Activity: Project Development** 

Sample Dissertation Title "Design & Performance of Advanced Steganography System using RGB" is attached next.

### DESIGNING AND PERFORMANCE OF ADVANCED STEGANOGRAPHY SYSTEM USING RGB

A dissertation

Submitted in the partial fulfillment of the requirement for the award of degree of

Master of Technology (M.Tech)

in

Computer Science & Engineering(Session:2013-2015)

Ву

SHEFALI NARANG (919459)

Under the guidance of Mr. Ashish Shrivastava Assistant Professor



Department of Computer Science & Engineering

Panipat Institute of Engineering & Technology,
Approved by AICTE, Affiliated to Kurukshetra University

#### DATA WAREHOUSING AND DATA MINING (MT-CSE-14-13):

Data warehouse refers to the process of compiling and organizing data into one common database and Data Mining refers to the process of extracting useful data from the databases. DWDM is created to support management systems. It is an increasingly important business intelligence tool, allowing organizations to standardize data from different sources which reduces the risk of error in interpretation, improves overall accuracy and make better business decisions. The process of Data Mining is used by the companies to turn raw data into useful information. It is done by using software to look for patterns in large batches of data, businesses can learn more about their customers to develop more effective marketing strategies, increase sales and decrease costs. A data warehouse (DW) is a collection of corporate information and data derived from operational systems and external data sources. It is designed to support business decisions by allowing data consolidation, analysis and reporting at different aggregate levels.

Data Mining is an important research methodology used by various M.Tech scholars in their research proposals. Some of such proposals can be listed as Sentiment Analysis of Twiter and Facebook using Map Reduce, Amazon Backed File System with Enhanced Storage Feature.

### **Experiential Activity: Project Development**

| S.no | Dissertation Title                                             | Year      | Student Name    |
|------|----------------------------------------------------------------|-----------|-----------------|
| 1    | Enhanced Ad-Hoc On Demanding Multipath Distance vector         | 2017-2018 | Shreya Aggarwal |
|      | Routing Protocol for Internet of Things                        |           |                 |
| 2    | An Efficient Data Locality System for Big Data Processing Over | 2016-2017 | Navneet Kaur    |
|      | Distributed Data Centre by using Scheduling Technique          |           |                 |
| 3    | Cloud Adoption : Critical Success Factors                      | 2014-2015 | Reshu Goel      |

Sample Dissertation Title "Enhanced Ad-Hoc on Demanding Multipath Distance vector Routing Protocol for Internet of Things" is attached next.

## ENHANCED AD-HOC ON-DEMANDING MULTIPATH DISTANCE VECTOR ROUTING PROTOCOL FOR INTERNET OF THINGS

A Dissertation
Submitted in partial fulfilment of the requirements
For the award of the degree
Of

MASTER OF TECHNOLOGY

COMPUTER SCIENCE AND ENGINEERING

Submitted By Shreya Aggarwal (1270652)

Under the guidance of

Deepak Kumar

Assistant Professor(CSE)



Department of Computer Science & Engineering
Panipat Institute of Engineering & Technology, Samalkha

### **DIGITAL IMAGE PROCESSING (MT-CSE-14-22):**

Image processing is a method to convert image into digital form and perform some operations on it in order to get an enhanced image or to extract some useful information from it. It is a type of signal dispensation in which input is image like video frame or photograph and output may be image or characteristics associated with that image. Digital image processing has wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Image processing techniques have its application in various areas like Communication, Avionics, Computer Systems, Robotics, Remote Sensing, Industrial Inspection, Medical Imaging, etc. In recent times, there has been a dramatic increase of image and video data in every conceivable field due to the proliferation of digital capture devices and also due to the internet increasingly becoming a multimedia phenomenon. Consequently, the field of Computer Vision and Image Processing has emerged as a promising field of study and research due to its wide spread applications in managing the huge influx of image and video data.

The students of PIET have used various Image Processing techniques in their research work. Some of the research proposals can be listed as Image Compression, CBIR (Content Based Image Retrieval) by cascading features and SVM, GSA-FODPSO-SVM based Feature Selection Algorithm for Hyper Spectral Image Classification.

### **ExperientialActivity: Project Development**

| S.no | Dissertation Title                                             | Year    | Student Name |
|------|----------------------------------------------------------------|---------|--------------|
| 1    | An Efficient Data Locality System for Big Data Processing Over | 2016-17 | Navneet Kaur |
|      | Distributed Data Centre by using Scheduling Technique          |         |              |
| 2    | Image Binarization using Local Image Gradient & TCM            | 2015-16 | Sumati Vij   |

Sample Dissertation Title "An Efficient Data Locality System for Big Data Processing over Distributed Data Centre by using Scheduling Technique" is attached next.

# AN EFFICIENT DATA LOCALITY SYSTEM FOR BIG DATA PROCESSING OVER DISTRIBUTED DATA CENTRE BY USING SCHEDULING TECHNIQUE

A Dissertation

Submitted in partial fulfilment of the requirements

For the award of the degree

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

Submitted By Navneet Kaur (1270649)

Under the guidance of Deepak Kumar (Assistant Professor)



Department of Computer Science & Engineering
Panipat Institute of Engineering & Technology
Samalkha