Bachelor of Technology (Electronics & Communication Engineering) Scheme of Studies/Examination Semester V

S.	Course	Subject	L:T:P	Hours/Week	Examina	tion Schedul	e (Marks)		Duration
No.	No.				Theory	Sessional	Practical	Total	of Exam (Hrs)
1	ECE - 301N	Microprocessors & Interfacing	3:1:0	4	75	25	0	100	3
2	HS- 303N	Business Intelligence & Enterpreneurship	3:0:0	3	75	25	0	100	3
3	ECE- 303N	Antenna & Wave Propgation	3:1:0	4	75	25	0	100	3
4	ECE- 305N	VLSI Technology	3:1:0	4	75	25	0	100	3
5	CSE- 304N	Essentials of Information Technology	3:0:0	3	75	25	0	100	3
6	ECE- 307N	Control Systems Engineering	3:1:0	4	75	25	0	100	3
7	ECE- 309N	Microprocessors & Interfacing Lab	0:0:3	3	0	40	60	100	3
8	ECE- 311N	Design Automation Lab	0:0:3	3	0	40	60	100	3
9	ECE- 313N	Antenna & Wave Propagation Lab	0:0:3	3	0	40	60	100	3
10	ECE- 315N*	Personality & Soft Skills Development	2:0:0	2	0	100	0	100	3
		Total		33	450	370	180	1000	

* The student will be evaluated on the basis of technical **training** seminar and technical writing/reading skills out of 50 marks for each.

Bachelor of Technology (Electronics & Communication Engineering) Scheme of Studies/Examination Semester VI

S. No.	Course No.	Subject	L:T:P	Hours/	Exa	amination Sch	edule (Marks)		Duration
				Week	Theory	Sessional	Practical	Total	of Exam (Hrs)
1	ECE-302N	Digital Signal Processing	3:1:0	4	75	25	0	100	3
2	ECE- 304N	Digital Design Using Verilog	3:1:0	4	75	25	0	100	3
3	ECE-306N	Digital Communication	3:1:0	4	75	25	0	100	3
3	HS-302N	Fundamentals of Management	4:0:0	4	75	25	0	100	3
5	ECE-308N	Computer Communication Network	3:1:0	4	75	25	0	100	3
6	ECE-310N	Digital Signal Processing lab	0:0:3	3	0	40	60	100	3
7	ECE- 312N	Digital Design Using Verilog Lab	0:0:3	3	0	40	60	100	3
8	ECE-314N	Digital Communication lab	0:0:3	3	0	40	60	100	3
9	ECE- 316N*	Personality & Soft Skills Development 2	2:0:0	2	0	100	0	100	3
		Total		31	375	345	180	900	

* The student will be evaluated on the basis of technical seminar and technical group discussions out of 50 marks for each. All students have to undergo for industrial training after 6^{th} semester which will be evaluated in 7^{th} semester.

ECE -301N	Microprocessor & Interfacing									
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time				
3	1	0	75	25	100	3				
Purpose	To learn the architecture and programming of Intel family microprocessors and its interfacing.									
			Course Outcom	ies						
CO 1	To study	the Architecture	e of 8085 microp	rocessors						
CO 2	To learn	the architecture	8086 Microproc	essor and its inte	erfacing to m	emories				
CO 3		the instruction ming of 8086 M		roprocessor and	assembly la	nguage				
CO 4	To learn	interfacing of in	terrupts, basic I/	O and DMA wit	h 8086 Micro	oprocessor				

Unit-I

8085 CPU Architecture: Evolution of Microprocessor, Introduction to 8085 - 8085 architecture Pin Details, Addressing Modes, Instruction Set and Assembler Directives, Instruction Timing Diagram.

Unit -II

8086 CPU Architecture: 8086 Block diagram; description of data registers, address registers; pointer and index registers, PSW, Queue, BIU and EU. 8086 Pin diagram description, Generating 8086 CLK and reset signals using 8284. WAIT state generation. Microprocessor BUS types and buffering techniques, 8086 minimum mode and maximum mode CPU module. MAIN MEMORY SYSTEM DESIGN: Memory devices, 8086 CPU Read/Write timing diagrams in minimum mode and maximum mode. Address decoding techniques. Interfacing SRAMS; ROMS/PROMS, Interfacing and refreshing DRAMS.

Unit -III

8086 Instruction Set: Instruction formats, addressing modes, Data transfer instructions, string instructions, logical instructions, arithmetic instructions, transfer of control instructions; process control instructions; Assembler directives.

8086 PROGRAMMING TECHNIQUES: Writing assembly Language programs for logical processing, arithmetic processing, timing delays; loops, data conversions.

Unit-IV

Basic I/O Interface: Parallel and Serial I/O Port design and address decoding. Memory mapped I/O Vs Isolated I/O Intel's 8255 and 8251- description and interfacing with 8086. ADCs and DACs, - types, operation and interfacing with 8086. Interfacing Keyboards, alphanumeric displays, multiplexed displays, and stepper motor, optical encoder with 8086.

Interrupts and DMA: 8086 Interrupt mechanism; interrupt types and interrupt vector table. Applications of interrupts, Intel's 8259. DMA operation. Intel's 8237.

Text Books:

- Barry B. Brey, "The Intel Microprocessor8086/8088, 80186", Pearson Education, Eighth Edition, 2009
- 2. D.V. Hall, Microprocessors and Interfacing, McGraw Hill 2nd ed.

Reference Books:

- 1. Liu, Gibson, "Microcomputer Systems: The 8086/88 Family", 2nd Edition, PHI,2005
- 2. Kenneth Ayala, "The 8086 Microprocessor: Programming & Interfacing the PC", Cengage Learning, Indian Edition, 2008
- 3. Kip Irvine, "Assembly language for IBM PC", PHI, 2nd Edition, 1993
- 4. Peter Abel, "Assembly language programming", Pearson Edu,5th Edition,2002
- 5. Uffenback, "The 8086 Family Design" PHI, 2nd Edition.
- 6. Walter A Triebel and Avtar Singh; The 8088 and 8086 Microprocessors, Programming, Interfacing, Software, Hardware and Applications, Fourth Edition, Pearson Education.

HS-303N		Business In	telligence & Entr	epreneurship		
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time
3	0	0	75	25	100	3
	1		Course Outcon	ies		
CO 1		ill be able unders an Entrepreneur		repreneurs are an	id what comj	petences needed
CO 2	identificati		0	the management y studies; project		, ,
CO 3			e a report and do ness idea, export	oral presentation marketing etc.	on the topic	s such as
CO 4		e able to know the g small industria		al and other assis	tance availal	ble for the

Unit -I

Entrepreneurship: Concept and Definitions; Entrepreneurship and Economic Development; Classification and Types of Entrepreneurs; Entrepreneurial Competencies; Factor Affecting Entrepreneurial Growth – Economic, Non-Economic Factors; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs; Entrepreneur; Manager Vs. Entrepreneur.

Unit -II

Opportunity / **Identification and Product Selection:** Entrepreneurial Opportunity Search &Identification; Criteria to Select a Product; Conducting Feasibility Studies; Project Finalization; Sources of Information.

Unit -III

Small Enterprises and Enterprise Launching Formalities : Definition of Small Scale; Rationale; Objective; Scope; Role of SSI in Economic Development of India; SSI; Registration; NOC from Pollution Board; Machinery and Equipment Selection; Project Report Preparation; Specimen of Project Report; Project Planning and Scheduling using Networking Techniques of PERT / CPM; Methods of Project Appraisal.

Unit -IV

Role of Support Institutions and Management of Small Business : Director of Industries; DIC; SIDO; SIDBI; Small Industries Development Corporation (SIDC); SISI; NSIC; NISBUD; State Financial Corporation SIC; Marketing Management; Production Management; Finance Management; Human Resource Management; Export Marketing; Case Studies-At least one in whole course.

Text Books:

- 1. Small-Scale Industries and Entrepreneurship. Himalaya Publishing House, Delhi -Desai, Vasant, 2003.
- 2. Entrepreneurship Management Cynthia, Kaulgud, Aruna, Vikas Publishing House, Delhi, 2003.
- 3. Entrepreneurship Ideas in Action- L. Greene, Thomson Asia Pvt. Ltd., Singapore, 2004.

ECE-303N	Antenna & Wave Propagation									
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time				
3	1	0	75	25	100	3 Hr.				
Purpose	To familiarize the students with the performance parameters of antenna, methods of analysis of antenna, antenna used for various applications and different ways of propagating the signal.									
		Co	ourse Outcomes							
CO1	To understar	nd the performa	ance parameters	s of antenna.						
CO2		-	sm of calculatin ds of some comr	ng the radiated f non Antennas.	fields of ant	tenna and				
CO3	To understand be broadband	-	nents, principal	ls, and structur	es for an a	ntenna to				
CO4	To understar	nd the different	ways of signal p	propagation.						

Unit – I

Basic Principles and Definitions: Retarded vector and scalar potentials. Radiation and induction fields. Radiation from elementary dipole (Hertzian dipole, short dipole, Linear current distribution), half wave dipole, Antenna parameters : Radiation resistance, Radiation pattern, Beam width, Gain, Directivity, Effective height, Effective aperture, Bandwidth and Antenna Temperature.

Unit – II

Radiating Wire Structures and Antenna Arrays: Folded dipole, Monopole, Biconical Antenna, Loop Antenna, Helical Antenna. Principle of pattern multiplication, Broadside arrays, Endfire arrays, Array pattern synthesis, Uniform Array, Binomial Array, Chebyshev Array, Antennas for receiving and transmitting TV Signals e.g. Yagi-Uda and Turnstile Antennas.

Unit – III

Broadband and Frequency Independent Antennas : Broadband Antennas. The frequency independent concept : Rumsey's principle, Frequency independent planar log spiral antenna, Frequency independent conical spiral antenna and Log periodic antenna.

Patch Antenna: Advantages and basic Configurations of Patch antenna. Different feeding techniques of Patch antenna. Method to analyze Patch antenna

Unit – IV

Propagation of Radio Waves : Different modes of propagation, Ground waves, Space waves, Surface waves and Tropospheric waves, Ionosphere, Wave propagation in the ionosphere, critical frequency, Maximum Usable Frequency (MUF), Skip distance, Virtual height, Radio noise of terrestrial and extra terrestrial origin. Multipath fading of radio waves.

Text Books:

- 1. A.R.Harish, M.Sachidananda, Antenna and Wave Propagation, Oxford University Press.
- 2. G.S.N.Raju, Antenna and Wave Propagation, Pearson.

Reference Books:

- 1. ConstantineA.Balanis, Antenna Theory Analysis and Design, John wiley & Sons.
- 2. John D. Kraus, Ronald JMarhefka, Ahmad S Khan, Antennas for all applications, McGraw Hill.

ECE- 305N	VLSI Technology									
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time				
3	1	0	75	25	100	3 Hrs				
		(Course Outcom	es						
CO1	rate, and	Students will be able estimate oxide thickness, growth rate, etch rate, deposition rate, and perform pattern etching etc. using knowledge of mathematics, science, engineering and practices.								
CO2		an design and co rowth / depositio		nts such as oxida s etc.	tion, metalliz	ation and				
CO3	Shall be ab	le to understand	l system, design	such as CVD rea	ctor, PVD ch	amber etc.				
CO4	Understand rooms.	Understanding of professional and ethical responsibility while working in clean rooms.								
CO5		ate effectively: and give an effect		vrite an engineer tation.	ing report o	on the topic				

Unit -I

Clean Room Technology - Clean room concept – Growth of single crystal Si, surface contamination, cleaning & etching, cleaning of p-type & n-type Si-wafer by solvent method & RCA cleaning, Fabrication process of p-n diode.

Unit -II

Oxidation – Growth mechanism and kinetic oxidation, oxidation techniques and systems, oxide properties, oxide induced defects, charactrisation of oxide films, Use of thermal oxide and CVD oxide; growth and properties of dry and wet oxide, dopant distribution, oxide quality, Isolation Techniques with reference to VLSI circuits.

Unit -III

Solid State Diffusion – Fick's equation, atomic diffusion mechanisms, measurement techniques, diffusion in polysilicon and silicon di-oxide diffusion systems. Ion implantation – Range theory, Equipments, annealing, shallow junction, high energy implementation.

Unit -IV

Mask making, E-beam writing, Lithography – Optical lithography, Lift-off technique, Some Advanced lithographic techniques, Physical Vapour Deposition – APCVD, Plasma CVD, MOCVD. Metallisation - Different types of metallisation, uses & desired properties, Fabrication process of Schottky diodes, VLSI Process integration and NMOS fabrication process.

Text Book:

- 1. Semiconductor Devices Physics and Technology, Author: Sze, S.M.; Notes: Wiley, 1985
- 2. VLSI Technology, Author: Sze, S.M.; Notes: Wiley, 1985;
- 3. An Introduction to Semiconductor Microtechnology, Author: Morgan, D.V., and Board;
- 4. The National Technology Roadmap for Semiconductors industry.

CSE-304N			I	Essentials of Info	rmation Technology	7			
Lecture	Tutorial	Practical	Credit	Theory	Sessional	Total	Time		
3	0	-	3.0	75	25	100	3 Hrs.		
Purpose	To introdu	To introduce the well informed design concepts of Object Oriented							
	Programming using Java and RDBMS								
		Course Outcomes (COs)							
CO1	Solve Prol	olems using va	rious efficient a	and reliable Algo	orithms.				
CO2	Design and	d Study the ba	sic concepts in	Java.					
CO3	Document	Document and implement Object oriented paradigms and design models in Java.							
CO4	Design and	d study RDBM	IS Modeling an	nd its program ir	nplementation.				

Unit I:

Problem Solving Techniques: Introduction to Problem Solving, Introduction to Algorithms and Flowchart, Searching algorithms: Linear search, Binary search and Sorting algorithms: Insertion and Selection sort, Basic Data Structures: Stack, and Linear Queue.

Unit II:

Programming Basics: Identifiers, Variables, Data Types, Operators, Control Structures: Loop, If else, Nested If, Switch Statement, Arrays, Strings, Object Oriented Concepts : Class & Object, Operator, Instance Variables & Methods, Access Specifiers, Reference Variables: This, Super, Parameter Passing Techniques, Constructors, Static, and Command Line Arguments

Unit III:

Relationships: Inheritance, Types of Inheritance, Static Polymorphism: Method Overloading, Constructor Overloading, Method Overriding, Abstract, Interface, Introduction to Packages.

Unit IV:

RDBMS- Data Processing, Database Technology, Data Models, Data Independence, ER Modeling Concept, ER-notations, Converting ER Diagram into Relational Schema, Definition of Keys: Primary key, Foreign key, Unique Key.

SQL: DDL Statements, DML Statements, DCL Statements, Joins, Sub queries, Views.

Books on Java

1. Java: The Complete Reference, Seventh Edition. Herbert Schildt, McGraw -Hill Education.

2. Programming with Java 3e A Primer, E Balagurusamy, McGraw Hill Education.

3. Introduction to Java Programming, K. Somasundaram , Jaico Publishing House, 1st edition. **Books on RDBMS, Oracle, MYSQL**

1. Fundamentals of Database Systems, with E-book (3rd Edition) by Shamkant B. Navathe,

Ramez Elmasri, Published by Addison Wesley Longman, January 15th, 2002.

2. MySQL by Paul DuBois Published by New Riders.

3. Murach's MySQL Paperback, Joel Murach, Published by Shroff/Murach, 2012.

4. SQL: The Complete Reference , James R. Groff, Paul N. Weinberg, Published by McGraw-Hill Companies, March 1999.

5. Schaum's Outline of Fundamentals of Relational Databases, Ramon Mata-Toledo, Published by McGraw-Hill November 15th 2000.

ECE-307N		Control	System Engine	ering					
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time			
3	1	0	75	25	100	3 Hrs			
Purpose	The purpose of this course is to create awareness about the various types of control systems with the techniques to analyze them so that the learner is able to mathematically design and evaluate the conditions for which a control system can provide stable output with improved performance.								
		Co	urse Outcomes						
CO1	Learner will be able to design and simplify the mathematical and graphical models of a control system through block diagram and signal flow graph method.								
CO2		n evaluate the cond n time domain.	litions for whi	ch a system can	ı work unde	r stable			
CO3	Learner will know about easier graphically methods to evaluate the conditions of stability in frequency domain.								
CO4		ill able to apply to covert an uns	_	-	-				

Unit-I

Introduction: The control system-open loop & closed loop, servomechanism, stepper motor. Mathematical Models of Physical Systems: Differential equation of physical systems, transfer function, block diagram algebra, signal flow-graphs, Mason's formula & its application. Feedback Characteristics of Control Systems: Feedback and non-feedback systems, Effects of feedback on sensitivity (to parameter variations), stability, overall gain etc.

Unit-II

Time Response Analysis: Standard test signals, time response of first order and second order systems, steady-state errors and error constants, design specification of second-order- systems. Stability:The concept of stability ,necessary conditions for stability, Hurwitz stability criterion, Routh stability criterion, Relative stability analysis. The Root Locus Technique: The Root locus concept, construction/development of root loci for various systems, stability considerations.

Unit-III

Frequency Response & Stability Analysis: Correlation between time and frequency response, Polar Plots, Nyquist plots, Bode Plots, Nyquist stability criterion, Gain margin & Phase margin, relative stability using Nyquist Criterion, frequency response specifications.

UNIT-IV

Compensation of Control Systems: Necessity of compensation, Phase lag compensation, phase lead compensation, phase lag lead compensation, feedback compensation. State Variable Analysis: Concept of state, state variable and state model, state models for linear continuous time systems, diagonalization solution of state equations, concept of controllability and observability.

Text Book:

Control System Engg.: I. J. Nagrath & M.Gopal; New Age India.

Reference Books:

- 1. Automatic Control Systems: B.C. Kuo; PHI.
- 2. Modern Control Engg: K. Ogata; PHI.
- 3. Control Systems: Principles & Designing : Madan Gopal; TMH.

ECE-309N	Microprocessors & Interfacing Lab									
Lecture	Tutorial	Practical	Sessional	Practical	Total	Time				
0	0	3	40	60	100	3 Hour				
Purpose	Write the efficient Assembly Language Program for different problem statements and implement different system interfacing.									
	1		Course Ou	tcomes						
CO 1		ogic, Coding, T	• • •	ogram such as Pro ice (Modifications,		•				
CO 2	To be able	to apply differe	nt logics to solve g	given problem.						
CO 3	To be able to write program using different implementations for the same problem									
CO 4	Use of programming language constructs in program implementation									

Before starting with the experiments, teacher should make the students conversant with the following essential theoretical concepts.

- A. i) Programming Model of Intel's 8086.
 - ii) Addressing Modes of Intel's 8086.
 - iii) struction formats of Intel's 8086
- B. Instruction set of Intel's 8086.
- C. Assembler (TASM), and Debugger.

List of Experiments: (Verification of atleast 3 experiments may also be done using TASM)

- a) Familiarization with 8086 Trainer Kit.
 b) Familiarization with Digital I/O, ADC and DAC Cards.
 c) Familiarization with Turbo Assembler and Debugger S/Ws
- Write a program to arrange block of data in

 ascending and (ii) descending order.
- 3. Write a program to find out any power of a number such that $Z = X^{N}$. Where N is programmable and X is unsigned number.
- 4. Write a program to generate.i) Sine Waveform (ii) Ramp Waveform (iii) Triangular Waveform Using DAC Card.
- 5. Write a program to measure frequency/Time period of the following functions.i) Sine Waveform (ii) Square Waveform (iii) Triangular Waveform using ADC Card.
- 6. Write a program to increase, decrease the speed of a stepper motor and reverse its direction of rotation using stepper motor controller card.
- 7. Write a programmable delay routine to cause a minimum delay = 2MS and a maximum delay = 20 minutes in the increments of 2 MS
- 8. Write a program that takes any two numbers as Input from the user through the input device (Keyboard) & Prints their sum on the standard output device (Screen).

- 9. Write a program that takes any two numbers as Input from the user through the input device (Keyboard) & Prints their sum on the standard output device (Screen) by giving appropriate messages to the user.
- 10. Write a program that initializes 100 positions in an array and loads them with zero.
- 11. Write a program that prints a Blinking character in the middle of the screen.
- 12. Write a program that accepts a number from the user through the input device (Keyboard), calculates its factorial and prints the result on the screen.

ECE- 311N									
Lecture	Tutorial	Practical	Sessional	Practical	Total	Time			
0	0 3 40 60 100 3 H								
	I.	1	Course Outc	omes	L.	I			
CO1	To familia	arize the student	s with circuit simu	lation tool (Multi	sim).				
CO2	Describe	the Digital ar	nd analog aspects	s of the simulati	on tool.				
CO3	To familiarize with the programming aspects of the virtual microcontrollers using inbuilt compiler and debugger.								
CO4	To familia	arize with the ha	rdware associated	with the simulation	ng tool (NI-EI	LVIS).			

List of Experiments:

- 1. Introduction to Multisim and associated GUI (Graphical User Interface) modules.
- 2. To design and study the volt-ampere characteristics of PN-Diode.
- 3. To design a virtual bridge rectifier.
- 4. To design a virtual Schmitt Trigger using Operational Amplifier.
- 5. To design a virtual low pass filter and study its phase and frequency response.
- 6. To design a virtual monostable multivibrator using 555 timer.
- 7. To design a virtual Weighted Average DAC.
- 8. To program and simulate the virtual MCU (Micro-Controller Unit) for LCD display.
- 9. Introduction to NI-ELVIS board.
- 10. To design on board circuit for Differentiator and Integrator and taking the output on screen.
- 11. To design on board circuit for Shift Register using associated peripherals and considering the output on screen.
- 12. To design the virtual single toned amplitude modulation circuit and analyze the spectrum of the output.

ECE-	Antenna & Wave Propagation Lab									
313N										
Lecture	Tutorial	Practical	Sessional	Practical	Total	Time				
0	0	3	40	60	100	3 Hr.				
		(Course Outcom	es	l					
CO1		stand the basi 3D simulation	-	FSS or any othe	er simulation	ı software				
CO2	To design	various types	s of antenna							
CO3	To analyz	To analyze various types of antennas								
CO4	To Find p	erformance p	To Find performance parameters of antenna							

List of Experiments:

- 1. To study and analyze the characteristic of monopole antenna.
- 2. To study and analyze the characteristic of Dipole antenna.
- 3. To study and analyze the characteristic of quarter wave Dipole.
- 4. To study and analyze the characteristic of Turnstile antenna.
- 5. To study and analyze the characteristic of different Patch antenna.
- 6. To study and analyze the characteristic of square loop antenna.
- 7. To study and analyze the characteristic of array of square loop antenna.
- 8. To study and analyze the characteristic of rectangular Waveguide.
- 9. To study and analyze the characteristic of circular Waveguide.
- 10. To study and analyze the characteristic of circulator.

ECE-302N	Digital Signal Processing								
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time			
3	1	0	75	25	100	3 Hr.			
Purpose	To familiarize the students with the basic concepts of Digital Signal Processing, Z- Transform, Fourier transform Designing of FIR and IIR Filters.								
		Co	urse Outcomes						
CO1	Introduce to Z	-Transform, Fou	urier Transforn	n and their prope	rties.				
CO2		To understand the basic concepts of Frequency Domain sampling and implementation of Discrete Time Systems.							
CO3	Familiarizatio	n with the Desig	n of FIR Filters	5.					
CO4	Familiarization with the Design of IIR Filters.								

Unit-I

Discrete Transforms: Z- transform and its properties, Inversion of Z-transform, One sided Z-transform and solution of differential equations. Analysis of LTI systems in Z-domain, causality, stability, schur-cohn stability test, relationship between Z-transform and Fourier transform.

Frequency Selective Filters: All pass filters, minimum-phase, maximum-phase and mixed-phase systems, Goertzel algorithm, Chirp Z-transform, applications of Z-Transform.

Unit-II

Frequency Domain Sampling and DFT: Properties of DFT, Linear filtering using DFT, Frequency analysis of signals using DFT, radix 2, radix-4, computation of DFT of real sequences.

Implementation of Discrete Time Systems: Direct form, cascade form, frequency sampling and lattice structures for FIR systems. Direct forms, transposed form, cascade form parallel form. Lattice and lattice ladder structures for IIR systems.

Unit-III

Design of FIR Filters : Characteristics of practical frequency selective filters. Filters design specifications peak pass band ripple, minimum stop band attenuation. Four types of FIR filters, alternation theorem.

Design of FIR filters using windows, Kaiser window method comparison of design methods for FIR filters, Gibbs phenomenon, design of FIR filters by frequency sampling method, design of optimum equiripple FIR filters.

Unit-IV

Design of IIR Filters: Design of IIR filters from analog filters, Design by approximation of derivatives, Impulse Invariance Method, Bilinear Transformation Method, Least Square Methods.

Characteristics of Butterworth, Chebyshev and Elliptical analog filters, Design of IIR filters, Frequency transformation, , design of IIR filters in frequency domain.

Text Books:

John G. Proakis, Digital Signal Processing, PHI.

Reference Books:

- 1. S. K. Mitra, Digital Signal Processing, TMH
- 2. Rabiner and Gold, Digital Signal Processing, PHI
- 3. Salivahan, Digital Signal Processing, TMH
- 4. Digital Signal Processing: Alon V. Oppenhelm; PHI

ECE-304N			Digital Des	ign Using Veril	og					
Lecture	Tutorial Practical Theory Sessional Total Tim									
3	1	0	75	25	100	3 Hr.				
Purpose	To familia	To familiarize the students with the conventions of the Verilog HDL programming,								
	algorithmic levels of abstraction for modeling digital hardware systems, Finite State									
	Machines, the concept of test-benches to create testing behavioral environments for									
	simulation based verification.									
	·		Course Outc	omes						
CO1	To underst	and the cons	tructs and conver	ntions of the Ve	rilog HDL prog	gramming.				
CO2	To understand the structural, register-transfer level (RTL), and algorithmic levels of									
	abstraction	n for modelir	ig digital hardwa	re systems.						
CO3	To design	and modelin	g of combination	al and sequent	ial digital syste	ems (Finite State				
	Machines)	•								
CO4	To apply	the concept	of test-benches t	o create testin	g behavioral e	nvironments for				
	simulation	based verifi	cation.							

Unit-I

Introduction: Introduction, conventional approach to digital design, VLSI design, ASIC design flow, Role of HDL.Conventional Data flow, ASIC data flow, Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools, Test Benches.

Language constructs and conventions: Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Memory, Operators, System Tasks.

Unit-II

Gate level modeling: Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives, Illustrative Examples, Tri-State Gates, Array of Instances of Primitives, Additional Examples, Design of Flip-flops with Gate Primitives, Delays, Strengths and Contention Resolution, Net Types, Design of Basic Circuits.

Behavioral modeling: Introduction, Operations and Assignments, Functional Bifurcation, Initial Construct, Always Construct, Examples, Assignments with Delays, Wait construct, Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non-blocking Assignments, The case statement, Simulation Flow, if and ifelse constructs, assign-deassign construct, repeat construct, for loop, the disable construct, while loop, forever loop, parallel blocks, force-release construct, Event.

Unit-III

Modeling at data flow level: Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to Vectors, Operators, Additional Examples.

Switch level modeling: Introduction, Basic Transistor Switches, CMOS Switch, Bi-directional Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Trireg Nets.

Unit-IV

Functions, tasks, and user defined primitives: Introduction, Function, Tasks, User- Defined Primitives (UDP), FSM Design (Moore and Mealy Machines).

System tasks, functions, and compiler directives: Introduction, Parameters, Path Delays, Module Parameters, System Tasks and Functions, File-Based Tasks and Functions, Compiler Directives, Hierarchical Access, General Observations.

Text Books:

1. T. R. Padmanabhan, B. Bala Tripura Sundari (2004), Design through Verilog HDL, Wiley & Sons Education, IEEE Press, USA.

2. J. Bhaskar (2003), A Verilog Primier, 2nd edition, BS Publications, India.

Reference Books:

- 1. Samir Palnitkar (2013), Verilog HDL, Pearson India.
- 2. Stephen. Brown, ZvonkoVranesic (2005), Fundamentals of Logic Design with Verilog, Tata McGraw Hill, India.
- 3. Charles H. Roth (2004), Digital Systems Design using VHDL, Jr. Thomson Publications, India.

ECE- 306N	Digital Communication							
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time		
3	1	0	75	25	100	3 Hr.		
		1	Course C	Outcomes	I			
CO1	Student w	vill be able to	perform coding	of various sources	.			
CO2	Student w	Student will be able to analyze various basic digital pulse modulation schemes.						
CO3	Student w	vill be able to	understand bas	e band pulse trans	mission.			
CO4	Student w	ill be able to a	analyze various	basic digital modu	lation techni	ques.		

Unit – I

Information Theory: Introduction, Entropy, Huffman Coding, Channel Capacity, Channel Coding, Linear Block Codes, Matrix Description, Syndrome Decoding, Hamming Code, Cyclic Code, Convolution Code generation and Viterbi decoding.

Unit – II

Pulse Modulation System: Model of digital communication systems, Sampling theorem for baseband and bandpass signals: natural sampling, Flat top sampling, Signal recovery & holding, Quantization of signal, Quantization error, Source coding & companding, Pulse code modulation (PCM), Noise in PCM systems, Differential pulse code modulation (DPCM), Adaptive pulse code modulation (ADPCM), Delta modulation (DM), Comparison of PCM, DPCM and DM, Adaptive delta modulation, Quantization noise, Time division multiplexed systems (T & E type systems), Calculation of O/P signal power, The effect of thermal noise, O/P signal to noise ratio in PCM, Quantization noise in delta modulation, The O/P signal to quantization noise ratio in delta modulation.

Unit – III

Base Band Pulse Transmission: Matched filter and its properties average probability of symbol error in binary enclosed PCM receiver, Intersymbol interference, Nyquist criterion for distortionless base band binary transmission, ideal Nyquist channel raised cosine spectrum, correlative level coding Duo binary signalling, tapped delay line equalization, adaptive equalization, LMS algorithm, Eye pattern.

Unit – IV

Digital Pass Band Transmission: Pass band transmission model; gram Schmidt orthogonalization procedure, geometric Interpretation of signals, Response of bank of correlaters to noise input, detection of known signal in noise, Hierarchy of digital modulation techniques, BPSK, DPSK, DEPSK, QPSK, systems; ASK, FSK, QASK, Many FSK, MSK, Many QAM, Signal space diagram and spectra of the above systems, effect of intersymbol interference, bit symbol error probabilities, synchronization.

Text Books:

- 1. Proakis John G., Digital Communication System, McGraw, (2000) 4th ed.
- 2. Simon Haylein, Digital Communication Systems, Wiley India edition, (2009) 2nd ed.
- 3. Information Theory, Coding and Cryptography, Ranjan Bose, TMH, II edition, 2007

Reference Books :

- 1. Lathi B. P., Modern Analog and Digital Communication, , Oxford University Press, (1998) 3rd ed.
- 2. Taub & Schilling, Principles of Communication Systems, McGraw Hill Publications, (1998) 2nd ed.
- 3. Simon Haykin, Communication Systems, John Wiley Publication, 3rd ed.

- 4. Sklar, Digital Communications, Prentice Hall-PTR, (2001) 2nd ed.
- 5. R N Mutagi, Digital Communication: Theory, Techniques and Applications, Oxford University Press, 2nd ed.

HS-302N	Fundamentals of Management							
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time		
4	0	0	75	25	100	3 Hrs.		
Purpose	To make the students conversant with the basics concepts in management thereby leading to nurturing their managerial skills							
			Course Out	comes				
CO1	An overview about management as a discipline and its evolution							
CO2	Understand the concept and importance of planning and organizing in an organization							
CO3	Enabling the students to know about the importance of hiring and guiding the workforce by understanding the concept of leadership and communication in detail							
CO4	To under manageme		ncept and tech	niques of control	ling and nev	v trends in		

Unit-I

Introduction to Management: Meaning, Definition, nature, importance & Functions, Management as Art, Science & Profession- Management as social System, Concepts of management-Administration **Evolution of Management Thought**: Development of Management Thought- Scientific management, Administrative Theory of Management, Bureaucratic Organization, Behavioral approach (Neo Classical Theory): Human Relations Movement; Behavioral Science approach; Modern approach to management – Systems approach and contingency approach.

Unit-II

Planning: nature, purpose and functions, types of plans, planning process, Strategies and Policies: Concept of Corporate Strategy, formulation of strategy, Types of strategies, Management by objectives (MBO), SWOT analysis, Types of policies, principles of formulation of policies

Organizing: nature, importance, process, organization structure: Line and Staff organization, Delegation of Authority and responsibility, Centralization and Decentralization, Decision Making Process, Decision Making Models, Departmentalization: Concept and Types (Project and Matrix), formal & informal organizations.

Unit-III

Staffing: concept, process, features; manpower planning; Job Analysis: concept and process; Recruitment and selection: concept, process, sources of recruitment; performance appraisal, training and development.

Directing: Communication- nature, process, formal and informal, barriers to Effective Communication, Theories of motivation-Maslow, Herzberg, McGregor ; Leadership – concept and theories, Managerial Grid, Situational Leadership. Transactional and Transformational Leadership.

Unit-IV

Controlling: concept, process, types, barriers to controlling, controlling Techniques: budgetary control, Return on investment, Management information system-MIS, TQM-Total Quality Management, Network Analysis- PERT and CPM.

Recent Trends in Management: Social Responsibility of Management–Management of Crisis, Total Quality Management, Stress Management, ., Concept of Corporate Social Responsibility (CSR) and business ethics. Functional aspects of business: Conceptual framework of functional areas of management- Finance; Marketing and Human Resources.

Text Books

- 1. Management Concepts Robbins, S.P; Pearson Education India
- 2. Principles of Management Koontz &O'Donnel; (McGraw Hill)

Reference Books

- 1. Business Organization and Management Basu ; Tata McGraw Hill
- 2. Management and OB-- Mullins; Pearson Education
- 3. Essentials of Management Koontz, Tata McGraw-Hill
- 4. Management Theory and Practice Gupta, C.B; Sultan Chand and Sons, new Delhi
- 5. Prasad, Lallan and S.S. Gulshan. Management Principles and Practices. S. Chand
- & Co. Ltd., New Delhi.
- 6. Chhabra, T.N. Principles and Practice of Management. DhanpatRai& Co., Delhi.
- 7. Organizational behavior Robins Stephen P; PHI.

ECE-		Computer Communication Networks								
308N										
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time				
3	1	0	75	25	100	3 Hr.				
Purpose	To famili	arize the stu	dents with the a	concepts of	basic comp	outer networks				
	used in c	used in communication. Also familiarize the students with the various layers								
	of OSI an	nd TCP/IP mo	del.							
			Course Outcomes	6						
CO1	To understand the concept of basics of computer networks and physic									
	laver& m	edia.								
CO2		To understand the concept and processes of data link layer and medium access sublayer.								
CO3	To familia session la		concept and desig	gn issues of	network, tra	ansport &				
CO4	To familia	rize with the co	oncept and protoco	ols of present	ation and ap	plication layer.				

Unit – I

Introduction:

Introduction to Computer Networks, Protocols and standards, Network Models: The OSI Model, Layers in the OSI Model, TCP/IP protocol suite, Introduction to addressing.

Physical Layer and Media:

Analog and Digital (signals & data), Transmission media : Guided & Unguided, The Telephone System, Narrowband ISDN, Broadband ISDN and ATM.

Unit -II

The Data Link Layer:

Data Link Layer Design issues, Error Detection & correction, Data link control: Framing, Flow & Error control, Noiseless channels, Noisy channels, HDLC, Point to Point protocols.

The Medium Access Sublayer:

Aloha Protocols, LAN Protocols: wired LAN,s ,Wireless LAN, Networks, Satellite Networks.

Unit -III

Network Layer:

Design issues, IPv4 addresses, IPv6 addresses, internetworking, IPv4, IPv6, congestion control algorithms.

Transport & Session Layer:

Protocol design issues, Process to process delivery, UDP, TCP connection Management, remote procedure calls.

Unit – IV

Presentation Layer:

Design issues, abstract Syntax notation, data compression technique, cryptography.

Application Layer:

Design issues, file transfer, access and and management, electronic mail, virtual terminals, WWW & HTTP .

Text Books:

- 1. Forouzan B.A, Data Communications and Networking, Tata-Mc-Graw Hill.
- 2. Tanenbaum A.S, Computer Networks, PHI.

Reference Books:

- 1. Stallings W, Data and Computer Communications, PHI.
- 2. Leon Garcia, Computer Networks, Mc Graw Hill

ECE- 310N	Digital Signal Processing Lab									
Lecture	Tutorial	Practical	Sessional	Practical	Total	Time				
0	1 1									
		1	Course Outco	omes						
CO1	Introduct	Introduction to MATLAB.								
CO2	Study of d	Study of different function and signals of DSP.								
CO3	Study of I	Study of DFT and DTFT with their properties.								
CO4	Study of z	-transform an	d its properties.							

List of Experiments:

- 1. Introduction to MATLAB.
- 2. Write a program to plot the Sine wave, cosine wave and Tangent wave.
- 3. Write a program to plot the following functions: a)impulse function b)unit step c)unit ramp d) exponential e) sinusoidal
- 4. Write a program to plot the convolution and multiplication of two signals.
- 5. Define a function to compute DTFT of a finite length signal. Plot the magnitude and phase plots using subplots.
- 6. Verify the Symmetry, time shifting and modulating properties of DTFT with a rectangular pulse.
- 7. Study the aliasing effect by using a Sinusoidal Signal. Show the plots of continuous time Signal. Sampled Signal and reconstructed signals by using subplot.
- 8. Write a program to plot real, imaginary phase and magnitude of exponential function.
- 9. Study different window functions available in signal processing.
- 10. Verify the properties of Discrete Fourier Transform (DFT).
- 11. Write a program to find the convolution of two sequences using in built convolution function.
- 12. Write a program to study the frequency shift property of DTFT.
- 13. Write a program to study circular shift property of DTFT.
- 14. Write a program to study scaling property of DFT.
- 15. Write a program to study the sampling theorem of a continuous time signal.
- 16. Write a program to study the Z-Transform.

17. Write a program to study the various Properties of Z-Transform.

Note: At least 10 experiments are to be performed with atleast 7 from above list, remaining 3 may either be performed from the above list or designed & set by concerned institution as per the scope of the syllabus.

ECE-		Digital Design Using Verilog Lab								
312N										
Lecture	Tutorial P	Practical	Sessional	Practical	Total	Time				
0	0	3	40	60	100	3 Hr.				
Purpose	To familiarize the students with the basics of design of conventional electronic circuits, the features of Verilog HDL, design circuits using gate level modeling.									
			Course C	Jutcomes						
CO1		oe, design, si n language.	, ,	thesize circuits usi	ing the Verilog	hardware				
CO2	To design and modeling of combinational and sequential digital systems.									
CO3	To develop program codes for synthesis-friendly combinational and sequential logic circuits.									
CO4		stand the ad complex sys		s of Verilog HDL :	and be able to	write optimized				

List of Experiments:

- 1. Write a Program to implement logic gates.
- 2. Write a Program to implement half-adder.
- 3. Write a Program to implement full-adder.
- 4. Write a Program to implement 4 bit addition/subtraction.
- 5. Write a Program to implement a 3:8 decoder.
- 6. Write a Program to implement an 8:1 multiplexer.
- 7. Write a Program to implement a 1:8 demultiplexer.
- 8. Write a Program to implement 4 bit comparator.
- 9. Write a Program to implement Mod-10 up counter.
- 10. Write a program to perform serial to parallel transfer of 4 bit binary number.
- 11. Write a program to perform parallel to serial transfer of 4 bit binary number.
- 12. Write a program to implementa8 bit ALU containing 4 arithmetic & 4 logic operations.

ECE-		Digital Communication Lab							
314N									
Lecture	Tutori	l Practical	Sessional	Practical	Total	Time			
0	0	3	40	60	100	3 Hr.			
		·	Course	Outcomes		·			
CO1	Stu	lent will be ab	le to perform c	oding techniques					
CO2	Stu	Student will be able to understand Optical fibre communication process							
CO3	Stu	Student will be able to understand base band pulse transmission.							
CO4	Stu	Student will be able to analyze various basic digital modulation techniques.							

List of Experiments:

- 1. To Study ASK
- 2. To Study PSK
- 3. To Study FSK
- 4. To Study Balanced Modulator & Demodulator
- 5. To Study PCM
- 6. Setting up a Fiber Optic Analog Link
- 7. Setting up a Fiber Optic Digital Link
- 8. Losses in Optical Fiber
- 9. Measurement of Numerical Aperture
- 10. Time Division multiplexing of signals.

Note: At least 10 experiments are to be performed with atleast 7 from above list, remaining 3 may either be performed from the above list or designed & set by concerned institution as per the scope of the syllabus.