

PANIPAT INSTITUTE OF ENGINEERING AND TECHNOLOGY, PANIPAT DEPARTMENT OF PHARMACY

Course: Bachelor in Pharmacy

LESSONPLAN

FacultyName: Dr. Seema RohillaSubject Name: Physical PharmaceuticsClass: B. Pharmacy -3rd SemesterSubjectCode: 302T

Scope of the Subject: The course deals with the various physical, physicochemical properties and principle involved in dosage forms, formulations. Theory and practical components of the subject help the student to get a better insight in to various areas of formulation research and development and stability studies of pharmaceuticals.

Course outcome: Upon completion of this course the student should be able to:

- 1. Understand various physicochemical properties of drug molecules in the designing the dosage form
- 2. Know the principles of chemical kinetics & to use them in assigning expiry date for formulation
- 3. Demonstrate use of physicochemical properties in evaluation of dosage forms.
- **4.** Appreciate physicochemical properties of drug molecules in formulation research and development

Each lecture: 01 hour

Particular Lecture **Remark/Date** No. **Unit 1: Solubility of drugs** Solubility expressions, mechanisms of solute solvent interactions 1. 2. Ideal solubility parameters, solvation & association Quantitative approach to the factors influencing solubility of 3. drugs, Dissolution & drug release, diffusion principles in biological 4. systems. Solubility of gas in liquids, solubility of liquids in liquids 5. Binary solutions, ideal solutions 6. 7. Raoult's law, real solutions, 8. Azeotropic mixtures, fractional distillation. Partially miscible liquids, Critical solution temperature and 9. applications. 10. Distribution law, its limitations and applications Unit 2: States of Matter and properties of matter State of matter, changes in the state of matter 11. Latent heats, vapour pressure, sublimation critical point 12. 13. Eutectic mixtures, gases, aerosols - inhalers 14. Relative humidity, liquid complexes, liquid crystals Glassy states, solid-crystalline, amorphous & polymorphism. 15. Physicochemical properties of drug molecules Refractive index, optical rotation, dielectric constant 16.

Number of Lectures: 45

17.	dipole moment, dissociation constant, determinations and applications
Unit 3: Micromeretics	
18.	Particle size and distribution, average particle size, number and weight distribution, particle number
19.	Methods for determining particle size by (different methods), counting and separation method
20.	Particle shape, specific surface,
21.	Methods for determining surface area, permeability, adsorption
22.	Derived properties of powders
23.	Porosity, packing arrangement, densities, bulkiness & flow properties
Unit 4: Complexation and protein binding	
24.	Introduction, Classification of Complexation
25.	Applications, methods of analysis, protein binding
26.	Complexation and drug action, crystalline structures of complexes
27.	Thermodynamic treatment of stability constants
Unit 5: pH, buffers and Isotonic solutions	
28.	Sorensen's pH scale, pH determination (electrometric and calorimetric)
29.	Applications of buffers, buffer equation, buffer capacity
30.	Buffers in pharmaceutical and biological systems, buffered isotonic solutions

Teacher in-charge

Principal