Scheme of Second Year

B.Tech Computer Science and Engineering (Cyber Security) Credit Based Scheme of Studies/Examination Semester III

s.	Course No.	Subject	L:T:P	Hours/Week	Credits	-	Examination Schedule (Marks)			Duration of Exam (Hrs)
N.						Major Test	Minor Test	Practical	Total	
1	PC-CS-CYS- 201A	Introduction to Cyber Security	3:0:0	3	3	75	25	0	100	3
2	PC-CS-CYS-203A	Data Structure	3:0:0	3	3	75	25	0	100	3
3	PC-CS-CYS-205A	Computational Thinking with Python	3:0:0	3	3	75	25	0	100	3
4	PC-CS-CYS-207A	Software Engineering	3:0:0	3	3	75	25	0	100	3
5	PC-CS-CYS-209A	Principles of Programming Languages	3:0:0	3	3	75	25	0	100	3
6	ES-CS-CYS- 211A	Computer Organization and Architecture	3:0:0	3	3	75	25	0	100	3
7	PC-CS-CYS- 213LA	Data Structure Lab	0:0:2	2	1	0	40	60	100	3
8	PC-CS-CYS- 215LA	Python Lab	0:0:2	2	1	0	40	60	100	3
9	PC-CS-CYS- 217LA	Software Engineering Lab	0:0:2	2	1	0	40	60	100	3
		Total		24	21	450	270	180	900	
10	SIM-201A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	

B.Tech Computer Science and Engineering (Cyber Security) Scheme of Studies/Examination Semester IV

S. N.	Course No.	Subject	L:T:P	Hours/ Week	Credits	Exa		on Schedu	_	Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	PC-CS-CYS-202A	Mathematics for Intelligent Systems	3:0:0	3	3	75	25	0	100	3
2	ES-CS-CYS-204A	Object-Oriented Programming System	3:0:0	3	3	75	25	0	100	3
3	PC-CS-CYS-206A	Data Base Management Systems	3:0:0	3	3	75	25	0	100	3
4	ES-CS-CYS-208A	Internet & Web technology	3:0:0	3	3	75	25	0	100	3
5	PC-CS-CYS- 210A	Operating System	3:0:0	3	3	75	25	0	100	3
6	PC-CS-CYS- 212A	Cryptographic Fundamentals	3:0:0	3	3	75	25	0	100	3
7	PC-CS-CYS- 214LA	Object Oriented Programming Lab	0:0:2	2	1	0	40	60	100	3
8	PC-CS-CYS- 216LA	Data Base Management Systems Lab	0:0:2	2	1	0	40	60	100	3
9	ES-CS-CYS- 218LA	Internet & Web Technology Lab	0:0:2	2	1	0	40	60	100	3
		Total		24	21	450	270	180	900	
10	MC-901A	Environmental Sciences	3:0:0	3		0		100	0	100

Syllabus Second Year

PC-CS-CYS-		Introduction to Cyber Security											
201A													
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0 0 3.0 75 25 100 3 Hot											
Purpose	To gain a b	oroad understa	anding in orde	er to get predictive	ways out related	d to cyber	security.						
			Course	e Outcomes									
CO1	To facilitat	e the basic kn	owledge of cy	yber security.									
CO2	To explore	and sort issue	es related to o	different types of a	ctivities in cyber	crime.							
CO3	To get ena	To get enable to fix the various cyber attacks.											
CO4	To deal wit	th the digital f	orensics and	related scenarios o	f cyber crimes.								

Unit-I

Introduction: Introduction and Overview of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: crime against individual, Crime against property, Cyber extortion, Drug trafficking, cyber terrorism. Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis.

Unit-II

Cyber Crime Issues: Unauthorized Access to Computers, Computer Intrusions, Viruses and Malicious Code, Internet Hacking and Cracking, Virus and worms, Software Piracy, Intellectual Property, Mail Bombs, Exploitation, Stalking and Obscenity in Internet, Password Cracking, Steganography, Key loggers and Spyware, Trojan and backdoors, phishing, DOS and DDOS attack, SQL injection, Buffer Overflow.

Unit-III

Introduction to cyber attacks: passive attacks, active attacks, Cyber crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control, Hardware protection mechanisms, OS Security

Unit-IV

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Cybercrime and Punishment.

Suggested Books:

- 1. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.
- 2. Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- 3. Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.

PC-CS-CYS-203A				Data Structu	ıre					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0 0 3.0 75 25 100 3 Hours									
Purpose	To introduc	e the princip	les and parad	ligms of Data	Structures for	design and	implement the			
	software sys	stems logicall	y and physicall ^y	у.						
			Course Out	comes (CO)						
CO 1	To introduc	e the basic o	concepts of da	ata structure ,	, basic data ty	pes ,searchin	ig and sorting			
	based on ar	ray data type	s.							
CO 2	To introduc	ce the struc	tured data ty	pes like Stac	ks and Queue	e and its ba	sic operations'			
	implementa	ition.								
CO 3	To introduce	To introduce dynamic implementation of linked list.								
CO 4	To introduce	To introduce the concepts of Tree and graph and implementation of traversal algorithms.								

Introduction to Data Structures, Data Types, Built in and User Defined Data Structures, Applications of Data Structure, Algorithm Analysis, Worst, Best and Average Case Analysis, Notations of Space and Time Complexity, Basics of Recursion.

Arrays, One Dimensional Arrays, Two Dimensional Arrays and Multi-Dimensional Arrays, Sparse Matrices, Searching from array using Linear and Binary Searching Algorithm, Sorting of array using Selection, Insertion, Bubble, Radix Algorithm

Unit-2

Stacks: Definition, Implementation of Stacks and Its Operations, Evaluation of Infix, prefix and Postfix Expression, Inter-conversion of Infix, Prefix and Post-Fix Expression, Implementation of Merge Sort and Quick Sort Algorithm. **Queues**: Definition, Sequential Implementation of Linear Queues and Its Operations, Circular Queue and Its

Implementation, Priority Queues and Its Implementation, Applications of queues.

Unit-3

Linked Lists: Need of Dynamic Data Structures, Single Link List and Its Dynamic Implementation, Traversing, Insertion, Deletion Operations on Single Link Lists. Comparison between Static and Dynamic, Implementation of Linked List. Circular Link Lists and Doubly Link List, Dynamic Implementation of Primitive Operations on Doubly Linked Lists and Circular Link List. Dynamic Implementation of Stacks and Queues.

Unit-4

Trees: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees.

Introduction to Binary Search Trees: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way search trees, Implementation of Heap Sort Algorithm.

Graphs: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First. **Suggested Books**:

• Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.

- Data Structures and Algorithms by PAI, TMH.
- Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999, Low Priced Edition.
- Data Structures and Program Design in C by Robert Kruse, PHI,
- Shukla, Data Structures using C++, Wiley India
- Introduction to Computers Science -An Algorithms Approach, Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.
- Data Structure and the Standard Template library Willam J. Collins, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-	Computational Thinking with Python											
205A Lecture	Tutorial	Practical	Credit	Major	Minor Test	Total	Time					
Lecture	Tutorial	Test										
3	0 0 3.0 75 25 100 3 Hours											
Purpose	program				n, a remarkably privile the second strain of the second strain st							
			Course O	utcomes (CO)							
CO 1		n python state rious example		nents and inde	entation, tokens,	input and o	output methods					
CO 2					, String, Tuples a ecision making a							
CO 3	To learn about different functions in python and Develop the function programs with all											
	the conce	the concepts like lambda, decorators and generators.										
CO 4	To lea	arn about the	exception h	andling funct	ions, file concept	ts and CSV	and JSON.					

Introduction to python: Advantages of python programming-Tokens-Variables-Input/output methods-Data types- Operators

Unit-2

DATA STRUCTURES: Strings-Lists-Tuples-Dictionaries-Sets.

CONTROL STATEMENTS: Flow Control-Selection control Structure-if-if-else-if-elseif-else-Nested if iterative control structures-while loop, for loop and range.

Unit-3

FUNCTIONS: Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

Unit-4

EXCEPTION HANDLING: Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

Suggested Books:

- Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- "Dive Into Python" by Mark Pilgrim
- Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-207A			Soft	ware Engineeri	ng						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0 3.0 75 25 100 3 Hours									
Purpose	To gain a	broad under	standing of	the discipline	of software	engineerin	g and its				
	application	to the develo	pment and m	anagement of s	software proces	ss.					
		C	Course Outco	mes(CO)							
CO1	To understa	nd the basic c	oncepts of S	oftware Enginee	ering.						
CO2	To understa	and the fund	damental co	ncept of requ	irements engir	neering and	d Analysis				
	Modelling.										
CO3	CO3 To understand the different design techniques and their implementation.										
CO4	To learn abo	out software t	esting and m	aintenance mea	asures.						

Introduction: Introduction to Software Engineering, Software Characteristics, Software Crisis, The Evolving role of Software, Software Development Life Cycle (SDLC) Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models, RAD, V Model.

Unit-II

Software Requirement Specification: Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Data Flow Diagrams, Decision Tables, SRS Document, IEEE Standard for SRS.

Software Quality: Software Quality, Concept of Software Quality Assurance (SQA), SEI-CMM Model. Introduction to Software Risk Management and Software Configuration Management

Unit-III

Software Design: Basic Concept of Software Design, Modularization, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion.

Design Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design. **Software Measurement and Metrics:** Various Size Oriented Measures: Halstead's Software Science, Function Point (FP) Based Measures, COCOMO, Cyclomatic Complexity Measures: Control Flow Graphs.

Unit-IV

Software Construction: Software construction fundamentals, minimizing complexity, Top-Down and Bottom –Up programming, structured programming, Compliance with Design and Coding Standards.

Testing: Testing Objectives, Unit Testing, Integration Testing, system testing, Acceptance Testing, Regression Testing, Structural Testing, Functional Testing, debugging.

Maintenance: key issues, Types of software Maintenance, Cost of Maintenance, Software Re-Engineering.

Suggested Books:

- 1. R. S. Pressman, Software Engineering: A Practitioners Approach, McGraw Hill.
- 2. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.
- 3. Pankaj Jalote, Software Engineering, Wiley India.
- 4. Rajib Mall, Fundamentals of Software Engineering, PHI Publication.
- 5. Ian Sommerville, Software Engineering, Addison Wesley.

PC-CS-CYS			Principles	of Programm	ning Language	s							
-209A													
Lecture	Tutorial	Intervision Practical Credit Major Test Minor Test Total Time											
3	0 0 3.0 75 25 100 3 Hours												
Purpose	To introdu	ce the prin	ciples and p	aradigms of	programming	languages	for design and						
	implement	the software	intensive syst	ems.									
			Course C	Outcomes (CO)								
CO 1	To introduce	e the basic co	ncepts of pro	gramming lan	iguage, the ge	neral probler	ms and methods						
	related to sy	ntax and sem	antics.										
CO 2	To introduce	the structure	ed data object	s, subprogran	ns and program	nmer defined	l data types.						
CO 3	To outline the sequence control and data control.												
CO 4	To introduce	the concept	s of storage m	anagement us	sing programm	ning language	s.						

Unit-I: Introduction, Syntax and Semantics

Introduction: A brief history, Characteristics of a good programming language, Programming language translators- compiler and interpreters, Elementary data types – data objects, variable and constants, data types. Specification and implementation of elementary data types, Declarations, type checking and type conversions, Assignment and initialization, Numeric data types, enumerations, Booleans and characters.

Syntax and Semantics: Introduction, general problem of describing syntax, Formal method of describing Syntax, attribute grammar dynamic semantic.

Unit-II: Structured data objects, Subprograms and Programmer Defined Data Types

Structured data objects: Structured data objects and data types, specification and implementation of structured data types, Declaration and type checking of data structure, vector and arrays, records Character strings, variable size data structures, Union, pointer and programmer defined data objects, sets, files.

Subprograms and Programmer Defined Data Types: Evolution of data type concept abstraction, encapsulation and information hiding, Subprograms, type definitions, abstract data types, over loaded subprograms, generic subprograms.

Unit–III: Sequence Control and Data Control

Sequence Control: Implicit and explicit sequence control, sequence control within expressions, sequence control within statement, Subprogram sequence control: simple call return, recursive subprograms, Exception and exception handlers, co routines, sequence control. Concurrency – subprogram level concurrency, synchronization through semaphores, monitors and message passing

Data Control: Names and referencing environment, static and dynamic scope, block structure, Local data and local referencing environment, Shared data: dynamic and static scope, Parameter and parameter transmission schemes.

Unit-IV: Storage Management and Programming Languages

Storage Management: Major run time elements requiring storage, programmer and system controlled storage management and phases, Static storage management, Stack based storage management, Heap storage management, variable and fixed size elements.

Programming Languages: Introduction to procedural, non-procedural, structured, logical, functional and object oriented programming language, Comparison of C and C++ programming languages.

Suggested Books:

- Terrence W. Pratt, Marvin V. Zelkowitz, Programming Languages Design and Implementation, Pearson.
- Allen Tucker and Robert Noonan, Programming Languages–Principles and Paradigms, Tata McGraw-Hill, 2009.
- Ellis Horowitz, Fundamentals of Programming Languages, Galgotia Publications, 2010.
- C. Ghezzi, Programming Languages Concepts, Wiley Publications, 2010.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

ES-CS-CYS-		Computer Organization and Architecture										
211A		utorial Practical Credit Major Test Minor Total Time										
Lecture	Tutorial											
		Test										
3	0	0 0 3.0 75 25 100 3 Hours										
Purpose	Student wi	Student will be able to understand the basic concepts of computer architecture and										
	organizatio	n, and unde	rstand the key	skills of const	ructing cost	-effective	computer					
	systems.											
			Course Outcor	nes (CO)								
CO1	Be familiar	with the t	functional units	s of the proces	ssor such a	as the re	gister file					
	and arithme	etic-logical un	it, and with the	basics of systems	topics							
CO2	Be familiar	with the desig	n trade-offs in d	lesigning and con	structing a c	omputer p	rocessor.					
CO3	Be familiar	Be familiar with the CPU design including the RISC/CISC architectures.										
CO4	Be familiar	with the bas	ic knowledge o	f I/O devices and	interfacing	of I/O de	vices with					
	computer.											

Unit- I

Data representation and Computer arithmetic: Introduction to Computer Systems, Organization and architecture, evolution and computer generations; Fixed point representation of numbers, digital arithmetic algorithms for Addition, Subtraction, Multiplication using Booth's algorithm and Division using restoring and non restoring algorithms. Floating point representation with IEEE standards and its arithmetic operations.

Unit-II

Basic Computer organization and Design: Instruction codes, stored program organization, computer registers and common bus system, computer instructions, timing and control, instruction cycle: Fetch and Decode, Register reference instructions; Memory reference instructions. Input, output and Interrupt: configuration, instructions, Program interrupt, Interrupt cycle, Micro programmed Control organization, address sequencing, micro instruction format and microprogram sequencer.

Unit-III

Central Processing Unit: General register organization, stack organization, instruction formats, addressing modes, Data transfer and manipulation, Program control. CISC and RISC: features and comparison. Pipeline and vector Processing, Parallel Processing, Pipelining, Instruction Pipeline, Basics of vector processing and Array Processors.

Unit-IV

Input-output organization: I/O interface. I/O Bus and interface modules, I/O versus Memory Bus. Asynchronous data transfer: Strobe control, Handshaking, Asynchronous serial transfer. Modes of Transfer: Programmed I/O, Interrupt driven I/O, Priority interrupt; Daisy chaining, Parallel Priority interrupt. Direct memory Access, DMA controller and transfer. Input output Processor, CPU-IOP communication, I/O channel.

Suggested Books:

- William Stallings, "Computer Organization and Architecture Designing for Performance", Sixth Edition, Pearson Education, 2003.
- Morris Mano, M., "Computer System Architecture," 3/e, Pearson Education, 2005.
- John P. Hayes, "Computer Architecture and Organization," 3/e, TMH, 1998.
- David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software interface", Third Edition, Elsevier, 2005.
- V.P. Heuring, H.F. Jordan, "Computer Systems Design and Architecture", Second Edition, Pearson Education, 2004.
- Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw Hill, 2002.

PC-CS-CYS-				Data Stru	cture Lab								
213LA													
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time						
				Test									
0	0	2	1	40	60	100	2 Hours						
Purpose	To introdu	ice the princi	ples and pa	radigms of	Data Structure	s for design	and implement the						
	software s	systems logica	lly and phys	ically.									
Course Outco	mes (CO)												
CO1	Implemen	it linear and n	on linear da	ta structure	es using linked l	ist.							
CO2	Apply vari	ous data struc	ctures such a	as stack, qu	eue and tree to	solve the p	roblems.						
CO3	Implement various searching and sorting techniques.												
CO4	Choose appropriate data structure while designing the applications and analyze the												
	complexit	y of the algori	thms.										

LIST OF PRACTICALS:

- 1. Write a program for Binary search methods.
- 2. Write a program for insertion sort, selection sort and bubble sort.
- 3. Write a program to implement Stack and its operation.
- 4. Write a program for quick sort.
- 5. Write a program for merge sort.
- 6. Write a program to implement Queue and its operation.
- 7. Write a program to implement Circular Queue and its operation.
- 8. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.
- 9. Write a program to implement doubly linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 10 Write a program to implement circular linked list for the following operations: Create, Display, inserting, counting, searching, traversing and deletion.
- 11. Write a program to implement insertion, deletion and traversing in B tree
- **NOTE:** A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-CYS- 215LA		Pyt	hon Lab									
Lecture	Tutorial	orial Practical Credit Minor Test Practical Total Time										
0	0	2 1 40 60 100 2 Ho										
Purpose	The course	e is designed to	o provide Bas	ic knowledge of P	ython	•						
			Course Outo	omes (CO)								
CO 1	To study fu	ndamentals of	python progr	amming and imple	ment basic pro	ograms.						
CO 2	To impleme	ent the searching	ng technique	using python.								
CO 3	To implement sorting techniques using python.											
CO 4	To impleme	ent matrix mul	tiplication usi	ng python.								

LIST OF PRACTICALS

- 1. WAP to compute the GCD of two numbers.
- 2. WAP to find the square root of a number
- 3. WAP to find the Exponentiation (power of a number)
- 4. WAP to find the maximum of a list of numbers
- 5. WAP for Linear search and Binary search
- 6. WAP for Selection sort, Insertion sort
- 7. WAP for Merge sort
- 8. WAP to find first n prime numbers
- 9. WAP to multiply matrices
- 10. WAP that take command line arguments (word count)
- 11. WAP to find the most frequent words in a text read from a file
- 12. WAP to Simulate elliptical orbits in Pygame
- 13. WAP to Simulate bouncing ball using Pygame

Note: A student has to perform at least 10 experiments. At least seven experiments should be performed from the above list. Three experiments may be designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-CYS-		Software Engineering Lab											
217LA													
Lecture	Tutorial	Practical	Credit	Minor	Practical	Total	Time						
		Test											
0	0	2 1 40 60 100 2 Hours											
Purpose	To gain a br	oad understa	nding of the	discipline of	software engi	neering							
	implementa	ition.											
			Course C	Outcomes									
CO1	To learn abo	out the reaso	ns for the sc	oftware crisis.									
CO2	To understa	To understand the software testing techniques.											
CO3	To understa	To understand the software metrics.											
CO4	To understa	nd the differe	ent design te	echniques and	d their implem	entation.							

LIST OF PRACTICALS

- 1. To identify the role of the software in today's world across a few significant domains related to day to day life.
- 2. To identify the problem related to software crisis for a given scenario.
- 3. To classify the requirement into functional and non-functional requirements.
- 4. To implement at least four software metrics.
- 5. Preparation of requirement document for standard application problems in standard format.(e.g Library Management System, Railway Reservation system, Hospital management System, University Admission system)
- 6. To prepare Project Schedule for standard application problems in standard format.
- 7. To implement the functional testing techniques.
- 8. To implement the structural testing techniques

PC-CS-CYS-2 02A		Mathematics for Intelligent Systems										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0 3.0 75 25 100 3 Hours										
Purpose		• •	•	-	ar algebra, diffe		•					
		C	ourse Outcor	nes (CO)								
CO1	To develop an applied to sigr		•	sic concepts	and technique	es of linea	ar algebra as					
CO2	To provide cor probability the		veen the con	cepts of line	ear algebra, difl	erential e	equation and					
CO3		To enable the students to understand the use of calculus and Linear algebra in modelling electrical and mechanical elements.										
CO4	To equip the s for computation			•	bability theory	in provid	ing data sets					

Unit 1

Basics of Linear Algebra - Linear Dependence and independence of vectors - Gaussian Elimination - Rank of set of vectors forming a matrix - Vector space and Basis set for a Vector space - Dot product and Orthogonality - Rotation matrices - Eigenvalues and Eigenvectors and its interpretation - Projection matrix and Regression – Singular Value Decomposition.

Unit 2

Convolution sum, Convolution Integral, Ordinary Linear differential equations, formulation, analytical and Numerical solutions, Impulse Response Computations, formulating state space models of Physical systems.

Unit 3

Examples of ODE modelling in falling objects, satellite and planetary motion, Electrical and mechanical systems. Multivariate calculus, Taylor series, Introduction to Optimization.

Unit 4

Introduction to Probability Distributions and Monte Carlo Simulations.

Suggested Books :-

1.

- Gilbert Strang, Linear Algebra and Learning from Data, Wellesley, Cambridge press, 2019.
- 2. William Flannery, Mathematical Modelling and Computational Calculus, Vol-1, Berkeley Science Books, 2013.

ES-CS-CYS-2	Object-Oriented Programming System										
04A											
Lecture	Tutorial	TutorialPracticalCreditMajorMinor TestTotalTime									
				Test							
3	0	0	3.0	75	25	100	3 Hours				
Purpose	To introduc	To introduce the principles and paradigms of Object Oriented Programming Language for									
	design and	design and implement the Object Oriented System.									
			Course Outc	omes (CO)							
CO1	To introduc	e the basic cor	ncepts of ob	ject oriented	d programming I	anguage	and the its				
	representat	ion.									
CO2	To allocate	dynamic men	nory, access	private me	mbers of class	and the	behavior of				
	inheritance	and its implem	entation.								
CO3	To introduce	To introduce polymorphism, interface design and overloading of operator.									
CO4	To handle	backup system	using file,	general purp	ose template a	nd handl	ing of raised				
1	exception d	uring program	ning.		-						

Unit–1

Introduction to C++, C++ Standard Library, Illustrative Simple C++ Programs. Header Files, Namespaces, Application of object oriented programming.

Object Oriented Concepts, Introduction to Objects and Object Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/ protected/ private), Class Scope and Accessing Class Members, Controlling Access Function, Constant, Class Member, Structure and Class

Unit-2

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors,

Introduction of inheritance, Types of Inheritance, Overriding Base Class Members in a Derived Class, Public, Protected and Private Inheritance, Effect of Constructors and Deconstructors of Base Class in Derived Classes.

Unit-3

Polymorphism, Pointer to Derived class, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding, Virtual Deconstructors.

Fundamentals of Operator Overloading, Rules for Operators Overloading, Implementation of Operator Overloading Like <<,>> Unary Operators, Binary Operators.

Unit-4

Text Streams and binary stream, Sequential and Random Access File, Stream Input/ Output Classes, Stream Manipulators.

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications.

Templates: Function Templates, Overloading Template Functions, Class Template, Class Templates and Non- Type Template arguments.

Suggested Books:

- **1.** The complete reference C ++ by Herbert shieldt Tata McGraw Hill.
- 2. Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- **3.** Shukla, Object Oriented Programming in c++, Wiley India.
- 4. C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- 5. Programming with C++ By D Ravichandran, 2003, T.M.H.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-206A		Data Base Management Systems									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3	0	0	3.0	75	25	100	3 Hours				
Purpose	To familiar	To familiarize the students with Data Base Management system									
			C	ourse Outco	omes						
CO1	To provide	introduction t	o relational	model.							
CO2	To learn ab	out ER diagra	ms and SQL								
CO3	To understa	and about the	concept of	functional o	dependencies.						
CO4	To understa	and about Qu	ery Processi	ng and Tran	saction Process	sing.					

Introduction: Concept & Overview of DBMS, Advantages of DBMS over file processing system, Database Languages, Responsibilities of Database Administrator, Database Users, Three Schema architecture of DBMS & Data Independence, Data Models.

Entity-Relationship Model: Basic concepts, Mapping Constraints, Keys, Entity-Relationship Diagram, Weak Entity Sets, Extended E-R features: Specialization and Generalization.

Unit-2

The Relational Data Model & Algebra: Relational Model: Structure of relational Databases, Relational Algebra & various operations (Set operation, select, project, joins, division), Relational Calculus: Domain, Tuple.

Integrity Constraints & Introduction to SQL:-

Domain Constraints, Referential Integrity Constraints, Basic Structure & Concept of DDL, DML, DCL, Aggregate Functions, Null Values, Introduction to views, creating, modifying and deleting views.

Unit-3

Relational Database Design : Functional Dependency, Different anomalies in designing a Database., Normalization – 1NF, 2NF, 3NF, Boyce-CODD Normal Form, Normalization using multi-valued dependencies, 4NF, 5NF.

Unit-4

Transaction Processing Concept: Introduction to transaction processing, transaction model properties, serializability:-Serial, non-serial and Serializable Schedules, Conflict Serializability.

Concurrency Control: Need of concurrency control, Different concurrency control Techniques: locking based, timestamps based technique. Deadlock handling and Recovery Techniques:- Deferred update/ immediate update, shadow paging.

Suggested Books:

- Elmasri and Navathe, "Fundamentals of Database Systems", Addision-Wesley,
- Silberschatz, and Korth,"Database System Concepts", McGraw-Hill

- Date, "An Introduction to Database Systems", Addison-Wesley,
- Bhattacharyya, "Database Management Systems", Tata McGraw-Hill Publishing.
- •

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

ES-CS-CYS-208A		Internet & Web Technology									
Lecture	Tutorial	Tutorial Practical Major Minor Total Time									
		Test Test									
3	0	0	75	25	100	3 Hours					
Purpose	To gain a broa	d understanding	g of the disci	pline of Wel	o engineering	and its application					
	to the development and management of Web Applications.										
		Cour	se Outcome	S							
CO1	Learn the basi	c concepts of inf	formation ar	nd web archi	tecture.						
CO2	Learn about t	he skills that w	ill enable to	o design an	d build high l	evel web enabled					
	applications.										
CO3	Understand th	e applicability o	f Java Script	as per curre	nt software in	dustry standards.					
CO4	Acquaint the	latest programm	ning langua	ge for the i	mplementatio	n of object based					
	and procedure	e based applicati	ions using Py	/thon.							

Information Architecture: The role of Information Architect, Collaboration and communication, Organizing information, organizational challenges, Organizing web sites and Intranets, Creating cohesive organization systems, designing navigation systems, types of navigation systems, Integrated navigation elements, designing elegant navigation systems, Searching systems, Searching your web site, designing the search interface, Indexing the right stuff, To search or not to search grouping content, conceptual design, High level Architecture Blueprint. Architectural Page Mockups, Design Sketches.

Unit-2

Introduction to XHTML and HTML5: Origins and Evolution of HTML and XHTML, Basic Syntax, Standard XHTML Document Structure, Basic Text Markup, Images, Hypertext Links, Lists, Tables, Forms, HTML5, Syntactic Differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of Style Sheets, Style Specification Formats, Selector Forms, Property Value Forms, Font Properties, List Properties, Color, Alignment of Text, Box Model, Background Images, Conflict Resolution.

Unit -3

Java Script: Overview of JavaScript, Object Orientation and JavaScript, General Syntactic Characteristics, Primitives, Operations, and Expressions, Screen Output and Keyboard Input, Control Statements, Object Creation and Modification, Arrays, Functions, Constructors, Pattern Matching Using Regular Expressions, Errors in Scripts

Unit -4

Python: Introduction to Python, Data Types and Expressions, Control Statements, Strings and Text Files, Lists and Dictionaries, Design with Functions, Design with Classes

Suggested Books:

- By Peter Morville, Louis Rosenfeld, "Information Architecture on the World Wide Web", O'Reilly Media, 2006.
- Robert W. Sebesta, "Programming The World Wide Web", Eight Edition, Pearson India, 2015.
- Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage Learning.
- Thomas A Powell, "HTML The Complete Reference", Tata McGraw Hill Publications.

PC-CS-CYS- 210A		Operating System										
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTestTestTestTest										
3	0	0	3.0	75	25	100	3 Hours					
Purpose	To familiarize the students with the basics of Operating Systems.											
			Cours	e Outcomes	(CO)							
CO1	To underst	and the struct	ure and fun	ctions of ope	erating system.							
CO2	To learn ab	out processes	, threads ar	nd scheduling	g algorithms.							
CO3	To underst	and the princi	ole of concu	urrency and t	he concept of	deadlocks.						
CO4	To unders systems.	tand various	memory m	anagement	scheme and	to study I/O ma	anagement and file					

Introduction: Introduction to OS. Operating system functions, Different types of O.S.: batch process, multi-programmed, time-sharing, real-time, distributed, parallel.

System Structure: Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (simple, layered, virtual machine), O/S services, system calls.

Unit-2

CPU scheduling: scheduling criteria, preemptive and non-preemptive scheduling, scheduling algorithms, algorithm evaluation, multi-processor scheduling.

Threads: overview, benefits of threads, user, and kernel threads.

Process Management: Concept of processes, process states, process control, co-operating processes, inter-process communication.

Process Synchronization: background, critical section problem, critical region, synchronization hardware, Classical problems of synchronization, semaphores.

Unit-3

Deadlocks: Concept of deadlock, deadlock characterization, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

Memory Management: background, logical vs. physical address space, contiguous memory allocation, paging, segmentation, segmentation with paging. Concept of fragmentation.

Virtual Memory: background, demand paging, concept of page replacement, page replacement algorithms, allocation of frames, thrashing.

Unit-4

File Systems: file concept, file organization and access methods, allocation methods, directory structure, free-space management I/O Management: I/O hardware, polling, interrupts, DMA, kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation) Disk Management: disk structure, disk scheduling (FCFS, SSTF, SCAN,C-SCAN), disk reliability, diskPerformance parametersProtection and Security:Goals of protection and security, security attacks, authentication, program threats, system threats, threat monitoring.Case studies: UNIX file system, Windows file system

Suggested Books:

- Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Wiley
- Operating systems: a concept based approach", Dhananjay M. Dhamdhere, McGraw Hill .
- Operating Systems : Internals and Design Principles, William Stallings, Pearson
- Operating Systems Design and Implementation" ,(Prentice Hall Software Series) Andrew S Tanenbaum and Albert S Woodhull.
- Taub and Schilling, Principles of Communication Systems, TMH.
- Mithal G K, Radio Engineering, Khanna Pub.

Note: The Examiner will be given the question paper template and will have to set the question paper according to the template provided along with the syllabus.

PC-CS-CYS-	Cryptographic Fundamentals											
212A												
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimTestTestTestTestTestTestTest										
3	0	0	3.0	75	25	100	3 Hours					
Purpose	To familiari	ze the studen	ts with fund	lamentals of	f cryptograph	ıy.						
		Course Outcomes										
CO1	To understa	nd basics of C	ryptography	y and Netwo	rk Security.							
CO2	To be able t	o secure a me	essage over i	insecure cha	nnel by vario	us means.						
CO3	To learn ab data	out how to m	naintain the	Confidentia	lity, Integrity	and Avail	lability of a					
CO4	To understa in the netw	nd various pro orks.	otocols for r	network secu	irity to prote	ct against t	he threats					

Introduction to Cryptography and Block Ciphers: Introduction to security attacks - services and mechanism - introduction to cryptography - Conventional Encryption: Conventional encryption model - classical encryption techniques - substitution ciphers and transposition ciphers - cryptanalysis - steganography - stream and block ciphers - Modern Block Ciphers: Block ciphers principals - Shannon's theory of confusion and diffusion - fiestal structure - data encryption standard(DES) - strength of DES - differential and linearcrypt analysis of DES - block cipher modes of operations - triple DES - AES.

Unit-2

Public key cryptography and Authentication requirements: Principles of public key crypto systems - RSA algorithm - security of RSA - key management – Diffle-Hellman key exchange algorithm - introductory idea of Elliptic curve cryptography.

Integrity checks and Authentication algorithms: MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME.

Unit-3

Cryptography and Network Security: Introduction to the Concept of Security, Cryptographic Techniques, Computer-based Symmetric and Asymmetric Key Cryptographic Algorithms, Public Key Infrastructure (PKI), Internet Security Protocols, Network Security.

Database Security: Data management technologies, Information security, Information Management Technologies, Security policies, Policy enforcement & related issues, Design principles, Multi-level relational data models, Security impact on database function.

Unit-4

Intrusion detection: Defining Intrusion Detection, Security concepts intrusion Detection concept, determining strategies for Intrusion Detection, Responses, Vulnerability Analysis, Credentialed approaches, Technical issues.

Suggested Books:

- NETWORK SECURITY AND MANAGEMENT BRIJENDRA SINGH, 2007
- Firewalls Complete Firewalls Complete Marcus Goncalves, 1998
- Information Security Architecture: An Integrated Approach to Security in the Organization Information Security Architecture: An Integrated Approach to Security in the Organization Jan Killmeyer, 2000
- Fundamentals of Network Security Fundamentals of Network Security John E. Canavan, 2001
- A Practical Introduction to Enterprise Network and Security Management A Practical Introduction to Enterprise Network and Security Management Bongsik Shin, 2017

PC-CS-CYS-		Object Oriented Programming Lab											
214LA													
Lecture	Tutorial	Futorial Practical Credit Minor Test Practical Total Time											
0	0	2	1	40	60	100	2 Hours						
Purpose	To introdu	To introduce the principles and paradigms of Object Oriented Programming Language for design											
	and impler	ment the Obje	ct Oriented	System.									
			Cours	e Outcomes (CC))								
CO1	To familiar	ize with the cla	ass and obje	ects									
CO2	To implem	ent the concep	ot of constr	uctors									
CO3	To familiar	To familiarize the concept of operator overloading											
CO4	To implem	ent the concep	ots of Inher	itance									

LIST OF PRACTICALS

1. Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power

() that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function.

2. A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this:

Enter coordinates for P1: 3 4

Enter coordinates for P2: 5 7

Coordinates of P1 + P2 are : 8, 11

3. Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this.

Enter first number, operator, and second number: 10/3

Answer = 3.333333 Do another (Y/ N)? Y Enter first number, operator, second number 12 + 100 Answer = 112 Do another (Y/ N) ? N

4. A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these

three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this:

- Enter your area code, exchange, and number: 415 555 1212
- My number is (212) 767-8900
- Your number is (415) 555-1212

5. Create two classes DM and DB which store the value of distances. DM stores distances in metres and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB objects, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and cenitmetres depending on the object on display.

6. Create a class rational which represents a numerical value by two double values- NUMERATOR and DENOMINATOR. Include the following public member Functions:

- constructor with no arguments (default).
- constructor with two arguments.
- void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator.
- Overload + operator to add two rational number.
- Overload >> operator to enable input through cin.
- Overload << operator to enable output through cout.

Write a main () to test all the functions in the class.

7. Consider the following class definition

```
class father {
protected : int age;
public;
father (int x) {age = x;}
virtual void iam ()
```

{ cout < < "I AM THE FATHER, my age is : "<< age<< end1:}

Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.

8. Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.

9. A hospital wants to create a database regarding its indoor patients. The information to store include

- a) Name of the patient
- b) Date of admission
- c) Disease
- d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the

information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).

10. Make a class **Employee** with a name and salary. Make a class **Manager** inherit from **Employee**. Add an instance variable, named department, of type string. Supply a method to **to String** that prints the manager's name, department and salary. Make a class **Executive** inherits from **Manager**. Supply a method **to String** that prints the string **"Executive"** followed by the information stored in the **Manager** superclass object. Supply a test program that tests these classes and methods.

11. Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.

12. Write a function called reversit () that reverses a string (an array of char). Use a for loop that swaps the first and last characters, then the second and next to last characters and so on. The string should be passed to reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".

13. Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first That () function and display any strings that match. Finally remove all the items from the Deque using the getLeft () function and display each item. Notice the order in which the items are displayed: Using getLeft (), those inserted on the left (head) of the Deque are removed in "last in first out" order while those put on the right are removed in "first in first out" order. The opposite would be true if getRight () were used.

14. Assume that a bank maintains two kinds of accounts for customers, one called as savings account and the other as current account. The savings account provides compound interest and withdrawal facilities but no cheque book facility. The current account provides cheque book facility but no interest. Current account holders should also maintain a minimum balance and if the balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type of account. From this derive the classes

cur_acct and sav_acct to make them more specific to their requirements. Include necessary member functions in order to achieve the following tasks:

a) Accept deposit from a customer and update the balance.

b) Display the balance.

- c) Compute and deposit interest.
- d) Permit withdrawal and update the balance.

e) Check for the minimum balance, impose penalty, necessary and update the balance.

f) Do not use any constructors. Use member functions to initialize the class members.

15. Create a base class called shape. Use this class to store two double type values that could be used to compute the area of figures. Derive two specific classes called triangle and rectangle from the base

shape. Add to the base class, a member function get_data() to initialize baseclass data members and another member function display_area() to compute and display the area of figures. Make display_area () as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes, design a program that will accept dimensions of a triangle or a rectangle interactively and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of rectangles and as base and height in the case of triangles and used as follows:

Area of rectangle = x * y

Area of triangle = ½ * x * y

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus.

PC-CS-CYS-		Database Management Systems Lab									
216LA											
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
0	0	2	1	40	60	100	2 Hours				
Purpose	To impleme	To implement practically the various concepts of DBMS									
			C	ourse Outcomes	5						
CO1	To underst	and& Impler	nent basic	DDL command	ls.						
CO2	To learn &	Implement I	OML and I	OCL command	s.						
CO3	To underst	and the SQL	queries us	ing SQL operat	tors.						
CO4	To underst	and the conc	ept of relat	ional algebra a	nd implement	using exa	amples.				

LIST OF PRACTCALS

- **1.** Create a database and write the programs to carry out the following operation:
 - Add , Delete and modify a record in the database
 - Generate queries
 - Data operations
 - List all the records of database in ascending order.
- **2.** To perform various integrity constraints on relational database.
- 3. Create a database and perform the following operations:-
 - 1. Arithmetic and Relational operations
 - 2. Group by & having clauses
 - 3. Like predicate for pattern matching in database
- 4. Create a view to display details of employees working on more than one project.
- 5. Create a view to display details of employees not working on any project.
- 6. Using two tables create a view which shall perform natural join, equi join, outer joins.
- **7.** Write a procedure to give incentive to employees working on all projects. If no such employee found give app. Message.
- 8. Write a procedure for computing amount telephone bill on the basic of following conditions.
 - 1. telephone rent Rs. 205 including first 105 free units.
 - 2. if extra units>0 but <500 then rate is 80 paise per unit.
 - 3. if extra units>500 then rate is Rs. 1.20 per unit.

For this purpose create a table with name, Phone No., No. of units consumed, bill amount of a customer.

- 9. Write a procedure for computing income tax of employee on the basic of following conditions:-
 - 1. if gross pay<=40,000 then I.T rate is 0%.
 - 2. if gross pay>40,000 but <60000 then I.T rate is 10%.
 - 3. if gross pay>60,000 but <1,00,0000 then I.T rate is 20%.
 - 4. if gross pay>1,00,0000 then I.T rate is 30%.

For this purpose create a table with name, ssn, gross salary and income tax of the employee.

10. Write trigger for before and after insertion, deletion and updation process.

NOTE: A student has to perform at least ten experiments. Seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed & set by the concerned institution as per the scope of the syllabus

ES-CS-CYS-		Internet & Web Technology Lab											
218LA													
Lecture	Tutorial	Tutorial Practical Credit Minor Test Practical Total Time											
0	0	2	1	40	60	100	2 Hours						
Purpose	To introduc	To introduce the concepts of HTML5, JavaScript and Python.											
Course Outcomes (CO)													
CO1	Design web	pages using l	HTML, JavaScrip	ot and CSS.									
CO2	Design and	test simple f	unction/program	m to implement	Searching an	d sorting t	echniques						
	using Pytho	on.											
CO3	Develop pr	ogram in Java	Script for patte	ern matching usi	ng regular exp	pressions a	and errors						
	in scripts.												
CO4	Design clier	nt-server base	ed web applicat	ions.									

LIST OF PRACTCALS

- 1. Create your own page with your favorite hobbies using HTML, JavaScript and CSS.
- 2. Create a frameset in HTML that is divided into three sections. The frameset should have three zones.
 - a. The Topmost section of the frameset should take up about just 15% of the browser window. Name this frame title.
 - b. The middle section should be 75% of the browser window. Name this frame title.
 - c. The lower section should be 10% of the browser window. Name this frame menu.
- 3. Create pages for each section. For the lowermost section, create page that loads the content into the middle section. The topmost section should contain a page describing the web page itself.
- 4. Create a web page, which displays the map of your country Link, each city /state on the image map, such that the respective HTML page of the city/state is displayed when the user selects an area.
- 5. Add the tickertape applet to your page by customizing it for the following settings:
 - a. Increase the count by one.
 - b. Accordingly update the message count.
 - c. Change the text color to (237,192,171)
 - d. Experiment with changing the scrolling speed.
 - e. Customize the message text as per your page requirement.
- 6. Incorporate a quest book into the Diary Food Webpage and use Java Script to build validations into the form.
- 7. Use Cascading Style sheets (CSS) to modify the following:
 - a. Change background.
 - b. Change font type, face and color.
 - c. Align Text.
 - d. Remove underlines from hyperlinks.
- Write the program for using JavaScript by using for loops (through a block of code a number of times), for/in loops (through the properties of an object), while loops (through a block of code while a specified condition is true), do/while loops (through a block of code while a specified condition is true).

- 9. Write a program in Java Script for the following:
 - a. Copying, passing, and comparing by value
 - b. Copying, passing, and comparing by reference
 - c. References themselves are passed by value
- 10. Write program in Java Script for pattern matching using regular expressions and errors in scripts.
- 11. Write a Python function/program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is an equilateral triangle.
- 12. Write the Python functions for linear search, binary search, selection sort, Bubble Sort, Insertion Sort and converting Fibonacci to a linear algorithm.
- 13. Write program in Python using Lists and dictionaries, Control statements and Strings and text files.

MC-901A		Environmental Sciences										
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0	0	0	75	25	100	3 Hours					
Purpose	To learn the	To learn the multidisciplinary nature, scope and importance of Environmental sciences.										
			Course	Outcomes (CO)								
CO1	The student	s will be able t	o learn the ir	nportance of na	tural resources.							
CO2	To learn the	theoretical ar	d practical as	spects of eco sys	stem.							
CO3	Will be able to learn the basic concepts of conservation of biodiversity.											
CO4	The student	The students will be able to understand the basic concept of sustainable development.										

The multidisciplinary nature of environmental studies, Definition, Scope and Importance, Need for public awareness, Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d)Food Resources: World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources: Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources, Equitable use of resources for sustainable lifestyle.

Unit-2

Ecosystem-Concept of an ecosystem: Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological Succession, Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest Ecosystem, (b) Grassland Ecosystem, (c) Desert Ecosystem and (d) Aquatic Ecosystems (ponds, streams, lakes, rivers, oceans, esturaries

Field Work: Visit to a local area to document Environment assets-river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban /Rural Industrial/Agricultural, Study of common plants, insects and birds, Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

Unit-3

Biodiversity and its conservation: Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity of global, National and local levels. India as a mega-diversity nation Hot spot of Biodiversity, Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts, Endangered and endemic species of India, Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

Environmental Pollution Definition: Cause, effects and control measures of (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies, Disaster management: floods, earthquake, cyclone and landslides

Unit-4

Social Issues and the Environment: From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns, Case Studies: Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies: Wasteland Reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public Awareness, Human population and the Environment, Population growth, variation among nations, Population explosion-Family Welfare Programme, Environment and human health. Human rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human Health, Case Studies, Drugs and their effects; Useful and harmful drugs, Use and abuse of drugs, Stimulant and depression drugs, Concept of drug de-addiction, Legal position on drugs and laws related to drugs.

Suggested Books:

- Environmental Studies- Deswal and Deswal. Dhanpat Rai and Co.
- Environmental Science and Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- Environmental Science- Botkin and Keller. 2012. Wiley , India

Note: The Examiner will be given the question paper template to set the question paper.