Panipat Institute of Engineering & Technology Department of CSE-AI&DS LESSON PLAN

Subject: Operating System

Subject code: PC-CS-AIDS-212A
Semester:4TH

S No	Торіс	CO Covered	Assignment No.	Teaching Methodology
1	Introduction to OS, Operating System functions	CO1		PPT
2	Different types of OS	CO1	Assignment-1	PPT
3	Real time, Parallel and Distributed OS	CO1		PPT
4	Computer System operation, I/O Structure	CO1		PPT
5	Storage structure, storage hierarchy	CO1		PPT
6	Different types of protections, operating system structure	CO1		PPT
7	Operating system services system calls	CO1		PPT
8	Revision of Unit-1	CO1		Oral test
9	Scheduling criteria	CO2		PPT
10	Preemptive and non-preemptive scheduling	CO2		PPT
11	Scheduling algorithms (FCFS)	CO2		PPT
12	Scheduling algorithms (SJF)	CO2	Assignment-2	PPT
13	Scheduling algorithms (PRIORITY)	CO2		PPT
14	Scheduling algorithms (Round Robin)	CO2		PPT
15	Algorithm evaluation, multiprocessor scheduling	CO2		PPT
16	Threads, overview, benefits of thread user and kernel thread	CO2		PPT
17	Process management	CO2		PPT
18	Process management	CO2	Assignment-3	Smart board
19	Process synchronization	CO2		Smart board
20	Concept of dead lock, deadlock characterization (Unit -3)	CO3		Smart board
21	Deadlock prevention, Deadlock avoidance	CO3		Smart board

22	Deadlock detection, recovery from deadlock	CO3		Smart board
23	Memory management	CO4		Smart board
24	Memory Management	CO4		PPT
25	Virtual Memory	CO4	Assignment-4	PPT
26	Virtual Memory	CO4		PPT
27	Revision of Unit 3	CO4		Oral Test
28	File System: concept, organization and access methods	CO5		PPT
29	Allocation methods directory structure, free space management	CO5		PPT
30	I/O Management: hardware, polling, interrupts	CO5		PPT
31	DMA, Kernels I/O Subsystem	CO6		PPT
32	Disk management: structure disk scheduling	CO6		PPT
33	Disk Reliability, disk performance parameters	CO6		PPT
34	Protection and security: goals, security attacks, authentication, program threats	CO6		PPT
35	System threats, threat monitoring	CO6		PPT