Panipat Institute of Engineering and Technology, Panipat

LESSON PLAN

Subject: Physical Pharmaceutics-II

Class: B. Pharmacy, Sem.:4th

Subject Code: BP 403 T

Subject Incharge: Dr. Daisy Arora

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives:

- 1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
- 2. Know the principles of chemical kinetics & to use them for stability testing and determination of expiry date of formulations
- 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Number of Lesson: 47 Each lecture: 01 hours (4 lectures per week)

Chapter	Lesson	Particular	Remark/Date
	No.		
UNIT-I Colloidal	1.	Introduction about subject and	
dispersions (07		Colloidal dispersions	
Hours)	2.	Classification of dispersed systems	
		& their general characteristics	
	3.	Classification of dispersed systems	
		& their general characteristics	
	4.	size & shapes of colloidal particles,	
	5.	classification of colloids &	
		comparative account of their	
		general properties.	
	6.	Optical, kinetic & electrical	
		properties.	
	7.	Effect of electrolytes, coacervation,	
		peptization& protective action.	
UNIT-II Rheology	8.	Newtonian systems, law of flow,	
	9.	kinematic viscosity, effect of temperature,	
	10.	non-Newtonian systems,	
		pseudoplastic	
	11.	Dilatant, plastic, thixotropy,	
	12.	thixotropy in formulation	
	13.	determination of viscosity, capillary,	
	14.	falling Sphere, rotational	
		viscometers	

	15.	Deformation of solids: Plastic and	
	13.		
	1.0	elastic deformation,	
	16.	Heckel equation, Stress Modulus	
	17.	Strain, Elastic Modulus	
UNIT-III Coarse	18.	Suspension; and.	
dispersion	19.	interfacial properties of suspended	
		particles, , settling in suspensions	
	20.	formulation of flocculated and	
		deflocculated suspensions.	
	21.	Emulsions and theories of	
		emulsification,	
	22.	microemulsion	
	23.	multiple emulsions	
	24.	Stability of emulsions,	
	25.	preservation of emulsions,	
	26.	rheological properties of emulsions	
	27.	emulsion formulation by HLB	
		method	
UNIT-IV	28.	Particle size and distribution	
Micromeretics	29.	mean particle size, number and	
		weight distribution, particle number	
	30.	mean particle size, number and	
		weight distribution, particle number	
	31.	methods for determining particle	
		size by different methods	
	32.	methods for determining particle	
		size by different methods	
	33.	counting and separation method	
	34.	particle shape, specific surface,	
	35.	methods for determining surface	
		area,	
	36.	permeability, adsorption, derived	
		properties of powders,	
	37.	porosity, packing arrangement,	
	38.	densities, bulkiness & flow	
		properties.	
UNIT-V Drug	39.	Reaction kinetics: zero, pseudo-	
stability		zero, first & second order.	
	40.	units of basic rate constants,	
		determination of reaction order.	
	41.	Physical and chemical factors	
		influencing the chemical	
		degradation of pharmaceutical	
		product:	
	42.	temperature, solvent, ionic strength,	
		dielectric constant, specific &	
		general acid base catalysis	
	43.	Simple numerical problems.	
		· · · · · · · · · · · · · · · · · · ·	

44.	Stabilization of medicinal agents	
	against common reactions like	
	hydrolysis & oxidation	
45.	3	
	expiration dating of pharmaceutical	
	dosage forms.	
46.	, ,	
	prevention	
47.	Revision of all the above topics with	
	questioning and answering	

(Daisy Arora) (Dr. Gaurav Agarwal)

Subject Teacher Principal