Panipat Institute of Engineering and Technology

Department of Civil Engineering

For Lecture's in B. Tech. Civil Engineering VIIth Semester

Course No.		0.	Title of the Course Co		urse Structure					
CE-401A		A	DESIGN OF CONCRETE	L-T-P	2-0-0					
			STRUCTUTRES-II							
COUR	COURSE OUTCOMES (CO)									
CO1	Stude	ents will be able to study behavior in the Beam and Prestressed concrete -moments, shear and design								
	of be									
CO2			l be able to design different types of Slabs, Stai	ions.						
CO3	· · · · · · · · · · · · · · · · · · ·									
CO4		ents wil	l be able to analyze the frames structures							
UNIT NO`			Topics To Be Covered	Lecture Nos						
1	1		c assumptions, Moment of inertia, settle	1-3						
			ification of moments, maximum momen	4						
		beams curved in plananalysis for torsion			5					
		redistribution of moments for single and multispan beams,			6					
		design examples								
			c principles, classification of prestressed		7-10					
		various Prestressing systems, losses in prestress, initial and								
			stress conditions							
			sis and design of sections for flexure ar	nd shear, load	11-13					
			ncing concept, I:S:Specifications.							
			blocksAnalysis of stresses, Magnel's me	•	14-16					
		meth	od, Bursting and spelling stresses, design	gn examples						
II		Adva	ntages of flat slabs, general design	considerations,	17					
			eximate direct design method							
l		design of flat slabs			18					
			ings in flat slab, design of various types	19						
			gn examples	20-22						
			bined footings, raft foundation, design	23						
		and piles, underreamed piles, design examples								
***		- ·			24.27					
III		Estimation of Wind and earthquake forces, design			24-27					
		requirements rectangular and cylindrical underground and overhead			25					
				25						
		Intze tanks, design considerations			26					
			gn examples		27					
				20						
W.		Silos and Bunkers Various theories			28					
		Runkers with sloping bottoms and with high side wells			29					
		Bunkers with sloping bottoms and with high side walls,			29					
		battery of bunkers,. design examples			20					
				30						
IV		Introduction, Member stiffness's, Loads, Analysis for			31					
			cal and lateral loads	22.24						
		Torsion in buildings, Ductility of beams, design and			32-34					
		detailing for ductility, design examples			25					
		Basic assumptions, Methods of analysis			35					

yield line patterns and failure mechanisms, analysis of one	36-37
way and two way rectangular and nonrectangular slabs	
effect of top corner steel in square slabs, design example	38-39

Sr. No.	Course Coordination Committee	Name	Contact No	E Mail Id
1.	Course Coordinator	Mr. Gaurav Kumar	7982232613	Gaurav.civil@piet.co.in