PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - Optics and Wave Year: - 2nd

Subject Code: - BS-201A Semester: - 3rd

Lecture No	Unit No	Торіс	COs Covered
L 1		Travelling waves, Characteristics of waves	CO1
L 2		Mathematical representation of travelling	
L 3 L 4 L 5 L 6		waves	
		General wave equation, Phase velocity,	
	UNIT-I	Light source emit wave packets	
		Wave packet and Bandwidth, Group	
		velocity and real light waves	
		Maxwell's equations, Electromagnetic	
		waves and constitutive relations	
		Wave equation for free-space, Uniform	
		plane waves	
L 7		Wave polarization, Energy density, the	
		pointing vector and intensity	
L 8		Radiation pressure and momentum, Light	
		waves at boundaries	
L 9		Wave incident normally on boundary	
L 10		Snell's law and reflection coefficients	
L 11		Principle of Superposition, Conditions for	CO2 CO2
		Sustained interference	
L 12		Young's double slit experiment	
L 13		Fresnel's Biprism and its applications	
L 14		Interference due to reflected and	
	UNIT-II	transmitted light	
L15		Wedge-shaped thin film	
L16		Newton's rings and its applications	
L 17		Michelson Interferometer and its	
		applications	
L 18		Types of diffraction, Fraunhofer diffraction	CO2
	UNIT-	at a single slit	
L 19	III	Plane transmission diffraction grating:	
		theory, secondary maxima and secondary	
		minima	

1.20	I	W/: 1/1 - f and a final and a final state	
L 20		Width of principal maxima, absent spectra,	
	-	overlapping of spectral lines	
L 21	_	Determination of wavelength	
L 22		Dispersive power and resolving power of	
		diffraction grating	
L 23		Polarization of transverse waves, Plane of	
		polarization	
L 24		Nicol Prism, Quarter and half wave plate	
L 25		Laurent 's half shade polarimeter	
L 26		Biquartz polarimeter, Biquartz polarimeter	
L 27		Stimulated Absorption, Spontaneous and	
		Stimulated Emission	
L 28		Einstein's Coefficients and its derivation	
L 29		Population Inversion, Direct and Indirect	
		pumping	
L 30	UNIT-	Gas lasers (He-Ne, CO ₂)	C02
L 31	IV	Solid state lasers (Ruby)	CO3
L 32		Solid state lasers (Neodymium)	
L 33		Solid state lasers (Semiconductor)	
L 34		Dye laser	
L 35		Characteristics of Laser	
L 36		Applications of Laser	

Text Books:

P.K. Diwan, Applied Physics for Engineers, Wiley India Pvt. Ltd., India

References:

- 1. N. Subrahmanyam, B. Lal, M.N. Avadhanulu, A Textbook of Optics, S. Chand & Company Ltd., India.
- 2. A. Ghatak, Optics, McGraw Hill Education (India) Pvt. Ltd., India.
- 3. E. Hecht, A.R. Ganesan, Optics, Pearson India Education Services Pvt. Lt., India.