PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - NT Subject Code: - EC-213A

Year: - 2ND Semester:- 3RD

Lecture No	Unit No	Торіс	COs Covered
1	-	Introduction to Subject, Introduction to basic circuit elements	
2	-	KCl, KVL with their numerical problems	
3	-	Numerical problems based on Nodal and Mesh analysis	
4	-	Introduction to Laplace transform	
5	3	Characteristics and Parameters of Two Port Networks: Relationship of two-port variables, open circuit impedance parameters	CO4
6		Short-Circuit admittance Parameters	
7		Numerical based on Z and Y parameters	
8		Transmission parameters	
9		Hybrid parameters	
10		Relationships between parameter sets	
11		Inter-connection of two port networks	
12	4	Types of Filters and their Characteristics: Filter fundamentals	
13		Constant-k low pass filters	
14		m-derived low-pass filters	CO5
15		m-derived high -pass filters	

16		Network Synthesis: Causality & Stability, Hurwitz Polynomials, Positive real functions	
17		Synthesis of one port networks with two kinds of elements.	CO5
18		Synthesis of one port networks with two kinds of elements.	
19		Synthesis of one port networks with two kinds of elements.	
20		Principles of network topology	
21		Principles of network topology	CO1
22	1	Graph Matrices	
23		Network Analysis (Time-Domain): Singularity Functions, Source-Free RC, RL	
24		Series RLC, Parallel RLC circuits, Initial & Final Conditions	CO2
25		Impulse & Step Response of RC	
26		Impulse & Step Response of RL	
27		Impulse & Step Response of Series RLC	
28		Impulse & Step Response of Parallel RLC circuits.	
29	2	Network Analysis (using Laplace Transform): Circuit Element Models, Transient Response of RC to various excitation signals such as step, ramp	
30		Transient Response of RC to various excitation signals such, impulse and sinusoidal excitations using Laplace transform.	CO2
31		Transient Response of RL to various excitation signals such as step	
32		Transient Response of RLC to various excitation signals such as step	
33		Network Functions: Terminal pairs or Ports, Network functions for one-port and two-port networks	CO3
34		Poles and zeros of Network functions,	

35	Time domain behavior from the pole and zero plot	
36	Restrictions on pole and zero Locations for driving point functions	
37	Restrictions on pole and zero Locations for transfer functions.	

TEXT BOOKS:

- 1. Fundamentals of Electric Circuits: Charles K. Alexander, Matthew N. O. Sadiku, McGraw Hill Education
- 2. Network Analysis: M.E. Van Valkenburg, PHI

REFERENCE BOOKS:

- 1. Network Analysis & Synthesis: F. F. Kuo, John Wiley.
- 2. Circuits & Networks: Sukhija & Nagsarkar, Oxford Higher Education.
- 3. Basic Circuit Theory: DasoerKuh, McGraw Hill Education.
- 4. Circuit Analysis: G.K. Mithal, Khanna Publication.

Online Resources:

https://archive.nptel.ac.in/courses/108/105/108105159/