PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - Signals & Systems Year: - 2nd Subject Code: - EC-209A Semester: - 3rd

Lecture	Unit No	Торіс	COs Covered
No			
L 1		Continuous and discrete time signals,	
		deterministic and stochastic signals,	CO1
		periodic and aperiodic signal	
L 2		even and odd signals	
L 3		energy and power signals	
L 4		exponential and sinusoidal signals and	
		singular functions.	
L 5		Signal representation in terms of singular	
	UNIT-I	functions, orthogonal functions and their	
		use in signal representation	
L 6		Linear and non-linear systems	
L 7		time invariant and time varying systems	
L 8		lumped and distributed systems,	
		deterministic and stochastic systems, casual	CO2
		and non-causal systems, analog and	
		discrete/digital memory and memory less	
		systems.	
L 9		Introduction to Random Variables, pdf, cdf	
L 10			1
		moments, distributions, correlation	CO1
		functions.	
T 11	-	Later duction to linear time inversion (I TI)	
		introduction to linear time invariant (L11)	
L 12	UNIT-II	systems	
		properties of L11 systems	CO2
L 14		convolution sum	
L 15		causal L11 systems described by	
L 16	-	differential and difference equations,	
L 16		Concept of impulse response	
L 17	UNIT-	Introduction to sampling	
L 18	III	sampling theorem and its proof	CO3
L 19		effect of undersampling	

[
L 20		reconstruction of a signal from sampled	
	-	signal	
L 21		Continuous time Fourier series (CTFS),	
L 22		Properties of CTFS, Convergence of	
		Fourier series	
L 23		Discrete time Fourier Series (DTFS)	CO2
L 24		Properties of DTFS	
L 25		Fourier series and LTI system, Filtering.	
L 26		Continuous Time Fourier Transform	
		(CTFT)	
L 27		Properties of CTFT	
L 28		Systems characterized by linear constant-	
		coefficient differential equations	
L 29		Discrete time fourier transform (DTFT)	
L 30	-	Properties of DTFT	
L 31		Duality	
L 32		Systems characterized by Linear constant	
	UNIT-	coefficient difference equations.	CO2
L33	IV	Introduction to Laplace transform	
L34		Region of convergence for laplace	
		transform	
L35		Inverse laplace transform,	
L36		Properties of laplace transform	
L37		Analysis and characterization of LTI	
		systems using laplace transform	
L38		System function algebra and block diagram	
		representations	
L39		Unilateral laplace transform	

Text Books:

Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Prentice Hall India, 2nd Edition, 2009

References:

Simon Haykins – "Signal & Systems", Wiley Eastern

Tarun Kumar Rawat, Signals and Systems, Oxford University Press.

H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.

M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.

B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

Web resources:

https://archive.nptel.ac.in/courses/108/104/108104100/ https://archive.nptel.ac.in/courses/108/106/108106163/ https://www.youtube.com/watch?v=Eknlx7zHBVo