PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - VLSI Technology

Year: -3rd

Semester:-5th

Lecture	Unit No	Topic	COs Covered
No			
L 1	-	Introduction to VLSI Technology	CO1
L 2		Crystal Growth: Monolithic and Hybrid IIs,	
		Crystal Growth	
L 3		Czochralski Technique of Crystal Growth	
L 4		Wafer Preparation and Specifications	
L 5		Defects, Measurements of Parameters of	
		Crystals	
L 6	UNIT-I	Fabrication Steps	
L7		Oxidation: Theory of Growth of Silicon Dioxide	
		Layer, Oxidation Kinetics	
L 8		Dry, Wet and High Pressure Oxidation, Plasma	
		Oxidation	
L 9		Properties of Oxidation, Defects Induced Due to	
		Oxidation	
L10		Revisions	
L 11		Epitaxial Process: Epitaxy and Its Concept	CO2
L 12		Growth Kinetics of Epitaxial Growth	
L 13		Low Temperature Epitaxy, Growth Chemistry of	
		Si Epitaxial Layer	
L14		Apparatus for Epitaxial Layer	
L15		MBE System Diffusion Process: Diffusion	CO3
		Models of Solid	
L 16	UNIT-II	Fick's Theory of Diffusion, Solution of Fick`s	
	UNII-II	Law,	
L 17		Diffusion Parameters Measurements	
L 18		Ion Implantation: Scattering Phenomenon	
L 19		Range Theory, Channeling, Implantation	
		Damage	
L 20		Ion Implantation Systems, Annealing	
L 21		Revisions	
L 22	LINITE	Lithography: Optical and non-optical	
	UNIT-	lithography	CO3
L 23	III	electron, X-ray	

L 24	_	ion-beam lithography	
L 25		contact/proximity and projection printers,	
		alignment.	
L 26		Photoresist and Etching: Types of photoresists,	
		polymer and materials	
L 27		Etching- Dry & Wet etching	
L 28		basic regimes of plasma etching, reactive ion	
		etching and its damages	
L 25		lift-off, and sputter etching	
L 26		Revisions	
L 27		Metallization: Applications and choices	
L 28		Physical vapor deposition,	
L 29		Patterning	
L 30		VLSI process fabrication steps: PMOS IC	
		technology	
L31		VLSI process fabrication steps: NMOS IC	
	UNIT-	technology	CO4
L32	IV	VLSI process fabrication steps: CMOS IC	CO+
		technology	
L33		Packaging: Package types, packaging design	
		consideration	
L34		VLSI assembly technologies	
L35		Yield and reliability in VLSI.	
L36		Revision	

Text Books:

S.M. SZE, VLSI Technology , McGraw Hill. 2009, 2nd Edition

References:

- 1. S. K. Gandhi, VLSI Fabrication Principles, Wiley, 2nd edition
- 2. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford 2008,2nd edition
- 3. Sedra & Smith, Microelectronic Circuits 2004, Oxford, 5th edition
- 4. J.D. Plummer, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Pearson

Web resources:

 $\frac{https://archive.nptel.ac.in/courses/117/106/117106093/}{https://www.youtube.com/playlist?list=PL-vRnk5CwD-0X344HTgE-HrI1NmOAmFZh}$