PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - Analog Circuit Year: - 3rd Subject Code: - EC-206A Semester: - 4th

Lecture	Unit No	Торіс	COs Covered
No			
L 1		UNIT-I: Introduction to subject, Amplifier	
		Models: Amplifier types: Voltage amplifier	
L 2		Current amplifier, trans-conductance	
		amplifier and	
L 3		Trans-resistance amplifier and comparison	
		analysis based on Input and Output	
		Impedance	
L 4		Biasing, Need of Biasing	
L 5		Q-point, DC, and AC analysis	
L 6	UNIT-I	Voltage divider biasing and its analysis	CO1
L 7	UNIT-I	Small signal analysis of CB amplifiers using	COI
		re-model	
L 8		Small signal analysis of CE, and CC	
		amplifiers using re-model.	
L 9		Small signal analysis of CS JFET amplifier	
L 10		Analysis of the amplifier to determine	
		voltage gain, input impedance, and output	
		impedance.	
L 11		Design procedure to design a CB, CE, CC	
		amplifier configuration	
L 12		Class A power amplifier and its derivation	
L 13		Class B power amplifier and its derivation	CO2
L14		Class C power amplifier and its derivation	
L15		Frequency response of an amplifier	
L 16		Effect of cascading of an amplifier on the	
	UNIT-II	frequency response	
L 17		Feedback in amplifier: Voltage series and	
		voltage shunt	
L 18		Current series and current shunt amplifier	
L19		Analysis of amplifier and numerical	
L20		Oscillator: Barkhausen criterion for	
		oscillators	

L 01			
L 21		Types of oscillators and principles of their	
	UNIT-	working	
L 22	III	RC phase shift oscillator	
L 23		Wein bridge oscillator	
L 24		LC oscillator: Hartley oscillator	
L 25		Working principle of Colpitts oscillator	CO3
L 26		555 timer operation as monostable multivibrator	
L 27		555 timer operation as Astable mulivibrator	
L 28		Op-Amp Applications: Simple op-amp circuits, ideal vs practical OP-AMP	
L 29		OPAMP as Adder and subtractor circuit	
L 30		OPAMP as Schmitt Trigger	
L 31		Differential Amplifier and types of	
		amplifier	
L 32		Design of dual input balanced output differential amplifier	
L 33	UNIT-	Design of dual input Un-balanced output	CO4
L 55	IV	differential amplifier	CU4
L 34		Design of single input balanced output	
		differential amplifier	
L 35		Design of single input Un-balanced output	
		differential amplifier	
L 36		Calculation of CMRR, common mode gain	
L37		Revision	
L38		Revision	

Text Books:

- 1. Millman & Halkias: Integrated Electronics, TMH.
- 2. Boylestad & Nashelsky: Electronic Devices & Circuit Theory, PHI.

Reference Books:

- 1. B.G. Streetman, Solid State Electronic Devices, Prentice Hall of India, New Delhi, 1995.
- 2. E S. Yang, Microelectronic Devices, McGraw Hill, Singapore, 1988.
- 3. A.S. Sedra and K.C. Smith, Microelectronic Circuits, Saunder's College Publishing, 1991.
- 4. S Salivahanan and N Naresh Kumar, Electronics devices and circuits, McGraw Hill, 1998.