PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - Antennas & Propagation

Year: - 3rd

Semester: - 6th

Lecture	Unit No	Topic	COs Covered
No			
L 1	UNIT-I	Physical concept of radiation	CO1
L 2		Retarded potential	
L 3		Radiation pattern, near- and far- field regions	
L 4		Radiation Resistance Gain, Directive Gain,	
		Power Gain	
L 5		Directivity, Efficiency, Beam width, Effective Height	
L 6		Effective Aperture, Bandwidth and Antenna	
LU		Temperature	
L 7		Radiation from Hertzian Dipole	
L 8		Short Dipole	
L 9		Monopole Antenna, Folded Dipole Antenna	
L10		Half Wave Dipole	
L 10	UNIT-II	Uniform Linear Arrays - Broadside Arrays	CO2
L 11		End fire Arrays	
L 12		Analysis of arrays of 2 Isotropic Sources -	
		Different Cases	
L 15		Binomial Array, Chebyshev Array	CO3
L16		Turnstile Antennas	
L17		Yagi-Uda antennas	
L 18		Loop Antenna (Rectangular & Circular)	
L 19		Helical Antenna	
L 20		Biconical Antenna.	
L 21	UNIT- III	Radiation from Rectangular Apertures,	
T 22		Uniform and Tapered Aperture	CO3
L 22		Horn antenna, Reflector Antenna	
L 23		Cassegrain and Gregorian Feeding Structures	
L 24		Rectangular Slot Antenna	
L 25		Basic configurations of patch antennas	
L 26		Method to Analyze Patch antenna	
L 27		Transmission Line Model	
L 28		Rumsey's principle	

L 29		Frequency Independent Planar Log Spiral	
		Antenna	
L 30		Introduction, Ground Wave Propagation	
L 31		Sky Wave Propagation: Virtual Height, Critical	
		Frequency	
L 32		Maximum Usable Frequency (MUF) – Skip	
		Distance	
L 33	UNIT- IV	Fading	CO4
L 34		Duct Propagation	
L 35		Troposcatter Propagation	
L 36		Flat Earth and Curved Earth	
		Concept.	
L37		Space Wave Propagation	
L38		Multi Hop Propagation	

Text Books:

- 1. J. D. Kraus, Antennas, McGraw Hill, 1988.
- 2. C.A. Balanis, Antenna Theory Analysis and Design, John Wiley, 1982.

References:

- 3. Antenna & Wave Propagation- K.D. Prasad, Satya Parkashan.
- 3. R.E. Collin, Antennas and Radio Wave Propagation, McGraw Hill, 1985.
- 4. I.J. Bahl and P. Bhartia, Micro Strip Antennas, Artech House, 1980.
- 6. A.R.Harish, M.Sachidananda, Antenna and Wave Propagation, Oxford University Press.

Web resources:

1. Antenna Parameters

https://nptel.ac.in/courses/108101092/4

2.Microstrip Patch Antennas

https://nptel.ac.in/courses/108101092/19

3. Radiation mechanism

https://www.youtube.com/watch?v=T-SbBlNgUTU