PANIPAT INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Electronics & Communication Engineering

LESSON PLAN

Subject Name: - Verilog HDL

Year: -3rd

Subject Code: EC-306 Semester:-6th

Lecture	Unit No	Торіс	COs Covered
		Introduction to Verilog HDL Conventional	
		Approach to Digital Design	
L 2		VI SI design ASIC design flow Role of HDI	
	-	Conventional Data flow, ASIC data flow	
		Verilog as HDL	
L 4		Levels of Design Description. Concurrency.	
		Simulation and Synthesis	
L 5		Functional Verification, System Tasks	
L 6	TLANT	Programming Language Interface (PLI),	
	Unit-1	Module	CO1
L 7		Simulation and Synthesis Tools, Test Benches	
L 8	1	Introduction to Language constructs and	
		conventions, Keywords, Identifiers, White	
		Space Characters	
L 9		Comments, Numbers, Strings, Logic Values,	
		Strengths, Data Types	
L 10		Scalars and Vectors, Parameters, Memory,	
		Operators, System Tasks	_
L 11		Revision	
L 12		Introduction to Gate level modelling, AND	
	_	Gate Primitive, Module Structure	
L 13		Other Gate Primitives, Illustrative Examples	
L 14		Tri-State Gates, Array of Instances of	
	-	Primitives, Additional Examples	
L 15		Design of Flip-flops with Gate Primitives	
L 16		Delays, Strengths and Contention Resolution,	
	-	Net Types	
L 17		Design of Basic Circuits	
L 18	I Late II	Introduction to Behavioral Modelling,	CO2
.	Unit-II	Operations and Assignments	
L 19		Functional Bifurcation, Initial Construct,	
L 20	4	Always Construct, Examples	
L 20		Assignments with Delays, Wait construct,	
L 01		Multiple Always Blocks	
L 21		Designs at Benavioral Level, Blocking and	
		statement	
L 22		Simulation Flow if and if else constructs	
		assign-design construct	

L 23		repeat construct, for loop, disable construct	
L 24		while loop, forever loop, parallel blocks	
L 25		force-release construct, Event.	
L 26		Revisions	
L 27		Introduction to Modelling at data flow level,	
		Continuous Assignment Structures	
L 28		Delays and Continuous Assignments,	
		Assignment to Vectors	
L 29	IL:: A III	Operators, Additional Examples	CO2
L 30	Unit -III	Bi-directional Gates, Time Delays with Switch	03
		Primitives	
L 31		Instantiations with Strengths and Delays,	
		Strength Contention with Trireg Nets	
L 32		Revision	
L 33		Function, Tasks	
L 34		User- Defined Primitives (UDP)	
L 35		FSM Design (Moore and Mealy Machines).	
L 36		Introduction to System tasks, functions, and	
		compiler directives, Parameters, Path Delays	
L 37	Unit-IV	Module Parameters, System Tasks and	CO4
		Functions	
L 38		File-Based Tasks and Functions, Compiler	
		Directives	
L 39		Hierarchical Access, General Observations	
L 40		Revision	

Text Books:

1. T. R. Padmanabhan, B. Bala Tripura Sundari (2004), Design through Verilog HDL, Wiley & SonsEducation, IEEE Press, USA.

2. J. Bhaskar (2003), A Verilog Primier, 2nd edition, BS Publications, India.

References:

1. Samir Palnitkar (2013), Verilog HDL, Pearson India.

2. Stephen. Brown, ZvonkoVranesic (2005), Fundamentals of Logic Design with Verilog, Tata McGraw Hill, India.

3. Charles H. Roth (2004), Digital Systems Design using VHDL, Jr. Thomson Publications, India.

Web resources:

1. https://onlinecourses.nptel.ac.in/noc21_ee97/preview